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In this talk I’ll introduce spectra and show how to reframe a good deal of classical algebraic topology in their language (homology and

cohomology, long exact sequences, the integration pairing, cohomology operations, stable homotopy groups). I’ll continue on to say a bit

about extraordinary cohomology theories too. Once the right machinery is in place, constructing all sorts of products in (co)homology

you may never have even known existed (cup product, cap product, cross product (?!), slant products (??!?)) is as easy as falling off a

log!

0 Introduction

Here is a table of some homotopy groups of spheres πn+k(Sn):

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
πn(Sn) Z Z Z Z Z Z Z Z Z Z
πn+1(Sn) 0 Z Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

πn+2(Sn) 0 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

πn+3(Sn) 0 Z2 Z12 Z⊕ Z12 Z24 Z24 Z24 Z24 Z24 Z24

πn+4(Sn) 0 Z12 Z2 Z2 ⊕ Z2 Z2 0 0 0 0 0
πn+5(Sn) 0 Z2 Z2 Z2 ⊕ Z2 Z2 Z 0 0 0 0
πn+6(Sn) 0 Z2 Z3 Z24 ⊕ Z3 Z2 Z2 Z2 Z2 Z2 Z2

πn+7(Sn) 0 Z3 Z15 Z15 Z30 Z60 Z120 Z⊕ Z120 Z240 Z240

There are many patterns here. The most important one for us is that the values πn+k(Sk) eventually stabilize. The
stable value is called the nth stable homotopy group of spheres and is denoted πSn .

This is true much more generally. Given any map f : X −→ Y of based spaces1, we can define its suspension
Σf : ΣX −→ ΣY to be the obvious map which preserves the suspension coordinate and applies f on each copy of
X. Then we have the following general theorem.

Theorem (Freudenthal suspension theorem). The sequence

[X,Y ] Σ−→ [ΣX,ΣY ] Σ−→ [Σ2X,Σ2Y ] Σ−→ · · ·

always stabilizes.

In fact, given any two maps f, g : ΣX → Y , we can add them by pinching ΣX in the middle to get the wedge
sum ΣX ∨ ΣX and then applying f on the upper copy and g on the lower copy.2 This ends up making [ΣX,Y ]
into a group3, and moreover [Σ≥2X,Y ] will always be abelian.4 The map Σ : [ΣkX,ΣkY ] −→ [Σk+1X,Σk+1Y ] is a
homomorphism, and so the limit is an abelian group.

Our main goal is to find a general framework for talking about stable homotopy classes of maps, though the
framework we find will be far richer than this modest goal would suggest.

1Everything for us will be based.
2In particular, this gives one way of defining addition in homotopy groups, since Sk = ΣSk−1 for k ≥ 1.
3Inverses are given by (−f)([t, x]) = f([−t, x]).
4These are true for the exact same reasons that π1 is a group and π≥2 is an abelian group.
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1 The category of spectra

1.1 Definitions

Definition. A CW-spectrum5 is a sequence of based CW-complexes {E0, E1, E2, . . .} (or sometimes {En}n∈Z) with
structure maps ΣEn −→ En+1.

For example, the suspension spectrum of a space X is denoted Σ∞X. This has En = ΣnX, with structure maps
the identity. Of particular importance is the sphere spectrum S = Σ∞S0.

We begin defining morphisms of spectra with the following definition, which ends up being too restrictive for
reasons we will see in a moment.

Definition. A function f : E −→ F of spectra of degree r is a collection of functions fn : En −→ Fn−r such that

ΣEn
Σfn- ΣFn−r

En+1

?
fn+1- Fn−r+1

?

commutes (on the nose) for all n.

Here is the problem. Consider the Hopf map η : S3 −→ S2. We’d like to have a corresponding function S −→ S,
but η does not desuspend to a map S2 −→ S1 or a map S1 −→ S0. So we refine our definition.

Definition. Note that k-cells of En become (k+ 1)-cells of En+1. A cofinal subspectrum E′ ⊆ E is a subspectrum
that eventually contains (the images of) all the cells of E. For our purposes a function from a subspectrum is as
good as a function from the spectrum itself, because we only care about the stable result. Thus we define a map
f : E −→ F of CW-spectra to be an equivalence class of functions from cofinal subspectra of E, where f ′ : E′ −→ F
and f ′′ : E′′ −→ F are equivalent if they agree on E′ ∩ E′′ (which is also a cofinal subspectrum of E).

This means that on any particular “stable cell” of E we can always wait until a later En to define the map,
although of course for each stable cell we do eventually need to say where we want it to go. The slogan (à la Adams)
is: “cells now, maps later”.

We now make our final definition.

Definition. A morphism f̃ : E −→ F of spectra is a homotopy class of maps of spectra. (Homotopies are defined
in the (semi-)obvious way.) We denote the morphisms from E to F of degree n by [E,F ]n. By [E,F ] we will mean
the collection of all morphisms from E to F (of any degree).

And now we have that πSn = [S,S]n, just as we might have hoped! More generally, [Σ∞X,Σ∞Y ]0 recovers the
stable homotopy classes of maps X −→ Y in a really clean way: a class is no longer represented by a bunch of
different maps with different domains and ranges, but is now just a single morphism of spectra.

Let us agree that applying the suspension functor Σ to a spectrum just shifts its indices by 1 (i.e. (ΣE)n = En+1).
What’s cool is that in our category of spectra we have a totally obvious definition of the inverse suspension function
Σ−1: it just shifts the indices the other way. Then, a morphism E −→ F of degree r (for any r ∈ Z) can equivalently
be written as a morphism ΣrE −→ F of degree 0 (or a morphism E −→ Σ−rF of degree 0). In particular, the
(stable) homotopy groups π∗(E) of a spectrum E are given by πn(E) = [S, E]n; for E = Σ∞X, this coincides with
the usual definition of stable homotopy groups of X.

1.2 Basic application: (co)homology

Now that we have our category of spectra, let’s look for some things to do with it. The obvious thing to do is to
search for spectra that aren’t just suspension spectra. Of course, it’s easy to find a sequence of spaces, so the real
task is to look for sequences of spaces that admit meaningful structure maps.

5We’ll stick to CW-spectra since they’re the easiest to work with – in fact, beyond this point we’ll probably just say “spectrum” when
we mean “CW-spectrum” – but the general case is not entirely different. When we say “space” we may often mean “CW-complex”,
too.
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A very important class of spaces, Eilenberg-MacLane spaces K(G,n), are related by

K(G,n)
∼=−→ ΩK(G,n+ 1).6

These maps are adjoint7 to maps ΣK(G,n) −→ K(G,n + 1) (though these are no longer homeomorphisms), and
so the Eilenberg-MacLane spaces K(G,n) fit together to form the Eilenberg-MacLane spectrum HG.

The most important property of these Eilenberg-MacLane spaces is that they represent cohomology: that is,

Hn(X;G) ∼= [X+,K(G,n)].8

It’s not too hard to see that we can also write this as [Σ∞X+,HG]−n = [Σ∞−nX+,HG]0. Despite the slight
confusion with indices, we often just write H∗(X;G) ∼= [Σ∞X+,HG].

As it turns out (and this is harder to see), we can write homology in terms of spectra too:

Hn(X;G) ∼= [S,HG ∧X+]n = πn(HG ∧X+).9

We say that HG corepresents the homology functor. Similarly, we often just write H∗(X;G) ∼= π∗(HG ∧X+).
Note that π∗(HG) = HG∗(pt) = G is the coefficient group, concentrated in degree 0.

1.3 Digression on extraordinary theories

Recall that the Eilenberg-Steenrod axioms10 completely characterize the singular (co)homology functors. In fact,
given one of these functors we can determine its coefficient group by applying it to a point and looking in degree 0.
However, once we relax the dimension axiom, we get what are known as extraordinary (co)homology theories. The
following theorem gives us a lot of traction on understanding their general theory.

Theorem (Adams’ Brown representability theorem). Every cohomology (resp. homology) theory is represented
(resp. corepresented) by a spectrum.

Of course, the way we do this is exactly the same as before. For any spectrum E, the E-cohomology of X
is defined to be E∗X = [Σ∞X+, E] and the E-homology of X is defined to be E∗X = π∗(E ∧ X+). We call
E∗(pt) = π∗(E) = [S, E] = [Σ∞pt+, E] = E∗(pt) the coefficient group for the theory, just as before, which we often
just denote by E∗. (Actually this will usually be a graded ring, but we’ll get to that later.) In general (and indeed
for any spectrum which doesn’t represent some singular cohomology theory, by its uniqueness), this will not be
concentrated in degree 0.

To give a sense of extraordinary theories, we will briefly mention two important ones below. We note here
though that by what we have just said, stable homotopy groups form a homology theory which is corepresented by
S, and that similarly stable cohomotopy groups form a cohomology theory.

1.3.1 K-theory

One extraordinary cohomology theory is K-theory. Of course, when people write K(X) they generally mean
the group completion of the monoid Vect∗(X) of complex vector bundles over X (under Whitney sum). This
is represented by BU × Z (the second factor remembers the virtual dimension). But if instead we write this as
K0(X), we can take a nod from the usual suspension isomorphism Hn(X) ∼= Hn+1(ΣX)11 and make the definition
K−1(X) = K0(ΣX). This means that K−1(X) ∼= [ΣX,BU × Z] = [X,Ω(BU × Z)]; that is, the functor K−1 is
represented by Ω(BU × Z). Then of course we define K−2(X) = K−1(ΣX) = K0(Σ2X), so K−2 is represented
by Ω2(BU × Z). One might wonder whether this goes on forever. Luckily, we have an excellent theorem that
dramatically simplifies the situation.

Theorem ((complex) Bott periodicity). Ω2(BU × Z) ' BU × Z.

In other words, the spectrum K is 2-periodic. In other words, complex K-theory is 2-periodic. And now that
we have a K-theory spectrum, we can define K-homology as above, too.

6This can easily be seen from the long exact sequence in homotopy groups for the path fibration over K(G, n + 1).
7In general, there is an adjunction Map(X, ΩY ) ∼= Map(ΣX, Y ). If you think about this, it’s pretty obvious. (Start with a map on

the left side and try to construct one on the right.)
8Here X+ is X with a disjoint basepoint; otherwise, if X is already based, then [X, K(G, n)] ∼= H̃n(X; G).
9For two spaces (or a spectrum and a space), we define the smash product by X ∧ Y = X × Y/X ∨ Y . Note that S0 ∧ X = X,

ΣX = S1 ∧X, and S ∧X = Σ∞X; these will be important later.
10The axioms are: (i) homotopy (homotopic maps give the same induced map); (ii) excision; (iii) additivity; (iv) long exact sequence

of a pair; and (v) dimension (the value on a point is concentrated in degree 0).
11Think about cellular cohomology.
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1.3.2 Cobordism

Another extraordinary cohomology theory is (real) cobordism, whose spectrum is MO (the O is for “orthogonal”,
as in O(n)). This name comes from the fact that its coefficient ring π∗(MO)12 is precisely the (real) cobordism
ring.1314 The elements of this graded ring are cobordism classes of closed manifolds; addition is given by disjoint
union, and multiplication is given by Cartesian product.

We construct the spectrum MO as follows. Over reasonable spaces, any real rank-n vector bundle is pulled
back from the tautological bundle γn −→ BO(n). We take MOn = T (γn), the Thom space of this bundle. To get
structure maps, we make two observerations. First, γn⊕R −→ BO(n) is a rank-(n+ 1) vector bundle over BO(n),
and so there is some map BO(n) −→ BO(n+ 1) for which it is given as a pullback in the diagram

γn ⊕ R - γn+1

BO(n)
?

- BO(n+ 1).
?

This gives us an induced map T (γ ⊕ R) −→ T (γn+1) on Thom spaces, and our second observation is that

T (γn ⊕ R) = T (γn) ∧ T (R) = T (γn) ∧ S1 = ΣMOn.

So the structure maps are just the induced maps on Thom spaces.

2 More structure

We have so far defined a spectrum. If we want to do much more, we will need more structure on our spectra. A
ring spectrum (of which the prototypical example is HR for R a ring) is a spectrum E along with a “unit map”
η : S −→ E and a “multiplication map” µ : E ∧E −→ E.15 So from now on, we will assume we are working with a
ring spectrum. We also Note here that S is a unit for the smash product.

2.1 Long exact sequences

The long exact sequence in cohomology is easy. Given a map of spaces A −→ X (which up to homotopy is an
inclusion, so we will consider it one), we can take its cofiber A −→ X −→ X/A.16 When we iterate this process,
(up to homotopy) we get A −→ X −→ X/A −→ ΣA −→ · · · . This gives us a cofiber sequence of suspension spectra
Σ∞A+ −→ Σ∞X+ −→ Σ∞(X/A)+ −→ Σ∞+1A+ −→ · · · , and applying the maps-to-a-spectrum functor [−+, E]−n
gives us a long exact sequence

[Σ∞+1A+, E]−n −→ [Σ∞(X/A)+, E]−n −→ [Σ∞X+, E]−n −→ [Σ∞A+, E]−n −→ · · · ,

which is just
En(ΣA) = En−1A −→ En(X/A) −→ EnX −→ EnA −→ · · · .

12In fact, π∗(MO) = Z/2[{xn : n 6= 2t − 1}] = Z/2[x2, x4, x5, x6, x8, x9, . . .]. Note that this is in degee 3. Using geometric topology,
one can show that any closed 3-manifold is the boundary of some 4-manifold. However, this method of constructing a Thom spectrum
(after René Thom, who introduced them in his thesis) allows one to (theoretically) compute the entire cobordism ring in one shot!

13There are other types of cobordism, too, and these all have corresponding Thom spectra whose coefficients are the desired ring. (This
is by something called the Thom-Pontryagin construction, which is pretty easy to understand. But actually computing the coefficients
is much more difficult, and uses some pretty heavy machinery called the Adams spectral sequence.) Notable examples include the real
oriented cobordism (MSO), complex cobordism (MU), symplectic cobordism (MSp), and spin cobordism (MSpin).

14Generalizing the fact that π∗(MO) is the cobordism ring is the fact that MO-cocycles on X are geometrically realized by smooth
families of manifolds parametrized by X. (For other Thom spectra, these manifolds have additional structure.)

15We have avoided talking about the smash product of spectra thus far because it is a very, very, very hairy issue. The naive definition
ends up not having the properties we’d like (associativity, commutativity, etc.), and so people have gone to great lengths to amend the
definitions, in many different directions and with varied results. For example, there are A∞-, E∞-, H∞-, symmetric, orthogonal, and
parametrized spectra. We’ll just pretend that we do have a smash product on spectra and that it shares all the properties of the smash
product on spaces.

16For the purposes of homotopy theory, X/A is the same thing as X ∪A CA. It is easy to see that a map X −→ Y induces a
nullhomotopic composition A −→ X −→ Y if and only if X −→ Y extends over CA. So, this is exactly the sort of sequence of spaces
that becomes exact if we apply the maps-to-a-space functor [−, Y ].
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The long exact sequence in homology is also easy, but it uses an incredible fact about the category of spectra:
a cofiber sequence is the same thing as a fibration sequence17! Thus the cofiber sequence of spaces A −→ X −→
X/A −→ ΣA −→ · · · gives us a fibration sequence of spectra E∧A+ −→ E∧X+ −→ E∧(X/A)+ −→ E∧ΣA+ −→
· · · , and applying the maps-from-a-spectrum functor πn = [S,−]n gives us a long exact sequence

πn(E ∧A+) −→ πn(E ∧X+) −→ πn(E ∧ (X/A)+) −→ πn(E ∧ ΣA+) −→ · · · ,

which is just
EnA −→ EnX −→ En(X/A) −→ En(ΣA) = En−1A −→ · · · .

2.2 Integration pairing

Homology is supposed to be something like “chains”, and cohomology is supposed to be something like “cochains”.
Thus, there should be a good notion of applying a cohomology class to a homology class. Indeed, this will be our
first taste of the “falling off a long” mantra. For f ∈ E∗X = [Σ∞X+, E] and σ ∈ E∗X = [S, E ∧X+], we define

〈f, σ〉 : S σ−→ E ∧X+ = E ∧ S ∧X+ = E ∧ Σ∞X+
1∧f−→ E ∧ E µ−→ E,

an element of the coefficient ring E∗ = π∗(E).18

2.3 Cohomology operations

An (unstable) cohomology operation is a natural transformation of functors En(−) −→ Fm(−). Thus, it is classified
by a map En −→ Fm, i.e. an element of Fm(En). The first nontrivial examples people usually seen are the Steenrod
squares, Sqi ∈ Hn+i(K(Z/2, n); Z/2) ∼= [K(Z/2, n),K(Z/2, n+ i)] for n ≥ i. These acts on cohomology as follows.
If x ∈ Hn(X; Z/2) ∼= [X,K(Z/2, n)], then Sqix = Sqi ◦ x : X −→ K(Z/2, n+ i).

But these Steenrod squares have a special additional property: for all n ≥ i we can define this element/map
Sqi, and then

K(G,n)
Sqi

- K(G,n+ i)

ΩK(G,n+ 1)

∼=

?
ΩSqi

- ΩK(G,n+ i+ 1).

∼=

?

Through the adjunction, this implies that

ΣK(G,n)
ΣSqi

- ΣK(G,n+ i)

K(G,n+ 1)
?

Sqi

- K(G,n+ i+ 1).
?

In other words, these are stable cohomology operations: they live in HZ/2∗HZ/2.
In general, the algebra of stable cohomology operations for a cohomology theory E is given by E∗E. The action

E∗E ⊗E∗ E∗X −→ E∗X is defined by θ · f = θ ◦ f : Σ∞X+ −→ E.19

2.4 Products

There are many products on (co)homology. In decreasing order of popularity we have the cup product, the cap
product, the cross products, and the slant products. But what’s great about spectra is that once you know what
your product is supposed to do, there’s really only one way to go about constructing it.

17Dually, a fibration sequence of spaces is exactly the sort of sequence of spaces that becomes exact if we apply the maps-from-a-space
functor [Y,−].

18Henceforth we will use this trick we have just employed implicitly, that E ∧X+ = E ∧ Σ∞X+.
19For spectra satisfying an additional assumption there are also (stable) homology cooperations, the coalgebra of which is given by

E∗E. But even when this exists it is harder to construct.
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2.4.1 Cup product

The cup product is supposed to be `: EmX ⊗E∗ EnX −→ Em+nX. This is implemented by

f ` g : Σ∞X+
∆−→ Σ∞X+ ∧ Σ∞X+

f∧g−→ E ∧ E µ−→ E.

2.4.2 Cap product

The cap product is supposed to be a: EmX ⊗E∗ EnX −→ Em−nX. This is implemented by

σ a f : S σ−→ E ∧X+
1∧∆−→ E ∧X+ ∧X+

1∧f∧1−→ E ∧ E ∧X+
µ∧1−→ E ∧X+.

2.4.3 Cross products

The cohomology cross product is supposed to be × : EmX ⊗E∗ EnY −→ Em+n(X × Y ). This is implemented by

f × g : Σ∞(X × Y )+ = Σ∞(X+ ∧ Y+) = Σ∞X+ ∧ Σ∞Y+
f×g−→ E ∧ E µ−→ E.

The homology cross product is supposed to be × : EmX ⊗E∗ EnY −→ Em+n(X × Y ). This is implemented by

σ × ρ : S = S ∧ S σ∧ρ−→ (E ∧X+) ∧ (E ∧ Y+) 1∧T∧1−→ E ∧ E ∧X+ ∧ Y+
µ∧1∧1−→ E ∧X+ ∧ Y+ = E ∧ (X × Y )+.

2.4.4 Slant products

The slant products are supposed to be / : Em(X × Y ) ⊗E∗ EnY −→ Em−nX and \ : EmX ⊗E∗ En(X × Y ) −→
En−mY . These are implemented by

f/σ : Σ∞X+ = S ∧X+
σ∧1−→ E ∧ Y+ ∧X+ = E ∧ (X × Y )+

1∧f−→ E ∧ E µ−→ E

f\σ : S σ−→ E ∧ (X × Y )+ = E ∧X+ ∧ Y+
1∧f∧1−→ E ∧ E ∧ Y+

µ∧1

E ∧Y+.

3 Conclusion

Of course, this is just the beginning of the theory of spectra. One last surprise, though. Remember that S is the
unit for smash product. Suppose ψ ∈ [S,S] = S∗S = S∗ = π∗(S) = πS∗ is a stable element of the homotopy groups
of spheres. Then for any morphism of spectra f : E −→ F , we have an action

ψ · f : E = S ∧ E ψ∧f−→ S ∧ F = F.

We may encapsulate this distinguished role that πS∗ plays by saying:

The stable homotopy groups of spheres act on absolutely everything in stable homotopy theory.

References: Adams, Stable Homotopy and Generalised Homology. Switzer, Algebraic Topology – Homology and
Homotopy.
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