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We begin with the fracture square
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which is a homotopy pullback square.! Our goal is to compute the homotopy groups of
everything in this picture.
First of all, £(0) = HQ, and luckily arithmetic localization works the way we’d hope,

SO
Q i=0
ﬂiLE(O)S { o’ z;éO

We will use the fact that £(0) = HQ again later to compute 7, Ly LS = Q®
7T, LgyS.

Recall that E,, is the n'? Lubin-Tate spectrum, which has coefficient ring 7 E, =
WE [y, .., 1, ] [#7], where ;] =0, |u| = 2, and W(F ,») = Z,[{] for { a prim-
itive (p” — 1)°* root of unity.? This comes with a spectrum-level action of G, the 7*”
Morava stabilizer group.® Tt is a fact that G, = z, and it is a deep fact that Ethl =~ LgpyS.
Moreover, given a group G, X G, acting on a spectrum X , we have X *(G1%C2) = (X hCG1)hCz;
since

ZXE{Z/ZXZZ’ p=2
=\ Z/(p—1)XZy p#2,
then to obtain Lg(;)$S we can first take homotopy fixed points of E; with respect to a
cyclic group and then with respect to the p-adics.

This is a good idea for the following reason. Given a group G acting on a spectrum

X, there is a homotopy fixed point spectral sequence running

H™(G,n,X)=> 7rS+ZX}’G,

IFor a spectrum F Bousfield guarantees a natural transformation 7y : id — Ly, and for spectra F; and F,
with (F;) > (F,), Bousfield guarantees a natural transformation /12 : Lg, — Ly, which induces the equivalence
Ly, Ly, =~ L, of functors.

2There is a map E(n) — E,, which on homotopy induces v; s #;#?' = for 1 <i <n —1and v, = u?" 1.
This classifies the Lubin-Tate formal group over (E,)),, which is the universal deformation of the height-» Honda
Jormal group over F .

3This is the automorphism group of the Lubin-Tate formal group.
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and in general, if M is a G-module and |G| - id;, is an isomorphism, then H*(G,M) =
H°(G,M)= MC, the G-invariants of M. In our situation, the vanishing theorem above
applies to the HFPSS for the first homotopy fixed point computation as long as we as-
sume p # 2. We therefore make this assumption and continue along this route.

So, our HFPSS for 7'C*E1b /=) has starting page
H™(Z(p = 1),m,Ey) = H(Z/(p — 1), E) = (m, Ey )P0,

This of course collapses for degree reasons, so we just need to compute these invariants.
Now, there is an accidental equivalence E; ~ K I/J\’ where K ;‘ is p-completed complex K-
theory, under which the action G; — Aut(E,) extends the Adams operations Z\{0} —
Aut(K ;\) Explicitly, for » € Z\{0}, the associated Adams operation ¢” on 7 K ;\ is
determined by ¢"(3%) = n¢- 3%, where 3 € nzK;)\ is (the image of) the Bott element. For
a € G,, we will therefore write the associated action on 7 E, as ¢*, which is determined
by ¢*(u?)=a“-u?. Our copy of Z/(p—1) C Z; consists of the (p —1)°* roots of unity,
so it follows that 7z, (£} /™) = (m E)H#~) = 2 [w*(r-1].

Now, it turns out that when you take homotopy fixed points with respect to a con-

tinuous group action, you may as well be taking homotopy fixed points with respect
to a dense subgroup.* So it suffices to choose a topological generator of Z » C Z; and

take homotopy fixed points with respect to the infinite cyclic subgroup that it generates.
We’d like to use an element that’s easy to work with, so let’s verify that 1+ p € Z;

corresponds to a topological generator of Z,,. This inclusion Z , C Z; is as the subgroup
of those p-adics beginning with 1, so we can take the inclusion Z, — Z; to be given by
a — exp(pa). This has a (partial) logarithm is defined by log(a’)/p < @’. So, 1+ p € Z;

corresponds to

A

_log(1+p>_§:(—z¢>)"‘1 p p P
B p _n:1 n 2 3

This is indeed a topological generator: to approximate any given p-adic integer arbitrarily
well, we can take an appropriate number of copies of A to get the 0*” digit, then add an
appropriate number of copies of pA to correct the 1°¢ digit, then add an appropriate
number of copies of p?4 to correct the 2”¢ digit, continuing out as far as we like. In
fact, it’s not hard to see that in fact the additive topological generators are precisely the
multiplicative units.

So, we obtain a fiber sequence’

EVS s gD grr—1 EPPe=) L wph

b

#This might be a slight lie, but it gives the right answer in this case at least.
SRecall that for any group G acting on a spectrum X, we can define the homotopy fixed points as X?G =
F (ZfE G,X)C, the honest fixed points of the “freeified” function spectrum. If G = Z, then we can take

EG =R. This admits a cellular filtration with EZ® = Z and EZ(") =R, which has EZ(")/EZ®) = %Z. Upon
applying F(X3°—, X Y2 to this cofiber sequence, we obtain the fiber sequence XX — X*Z — X, which rotates

to a fiber sequence X% — X — X where the map X — X is the difference of the action of a generator of Z

hZ[(p—1)

and the identity map. Setting X = E,

gives the fiber sequence that we use here.
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and applying 7, gives us a long exact sequence. We therefore compute (¢!*+7 —1)(s*(?=1))
(for k € Z) to determine n*EfG”.

e When k& =0, we have (¢'7 — 1)(v%) =0.
e When & > 0, we have

1+ k(p—1)\ _ k(p—1) k(p—1) _ D k(p-1) i k(p-1)
(P =) ) = (14 p) e~ — ke = | D ; pt|un

=1
It turns out that up to a p-adic unit, this coefficient is just & pb
e When k <0, we know that (14 p)™' =32 (—p), so we have

i=0
- (~kXp-1)
(1 = ) = (14 )= — 1)k = <Z<—p>"> 1] ko,
1=0
It turns out that up to a p-adic unit, this coefficient is also just & p.”

. hZ[(p—1) - . .
Since 7 E, /(71 is even-concentrated, we can immediately deduce that

Zp, 1=-1,0
mlgS=mE S ={ Z,/kp, i=2k(p—1)—1fork€Z\{0}
0, otherwise.

This implies that

_ _ Q , 1=-1,0
ﬂiLE(o)LKu)S =Q® ”iLK(l)S - { o,}7 otherwise.

Finally, to compute 7, L ;,S, we have a Mayer-Vietoris long exact sequence in stable
homotopy coming from the fracture square. Luckily this is quite easy because of the
simplicity of 77, LS and 7, L)Ly (;)S and because the maps on homotopy are the
expected ones, and so we can read off that
Qp/Zp :Z/POO’ 1==2
Z,/kp, i =2k(p—1)—1for k € Z\{0}

0, otherwise.

niLE(l)S =

®To see this, note that 1+ p € Z/p" generates the second factor in (Z/p”)* = Z/(p — 1) x Z/p"~". So,
(1+p)™ =1 (mod p™) iff p"~!|m. Setting m = k(p — 1) gives that the p-adic valuation of our coefficient of
W=D isy (14 p)e=D — 1) =v, (k(p — 1))+ 1=, (k) + 1.

7Instead of using the previous method, another way to see this is just to replace our original choice of 1+ p
with (14 p)~! for the £ < 0 calculation. (Note that this is also a topological generator.) This coefficient then
becomes exactly the one we already saw above.



