
THE ZEN OF ∞-CATEGORIES

AARON MAZEL-GEE

Abstract. In this expository essay, we provide a broad overview of ab-
stract homotopy theory. In the interest of accessibility to a wide mathe-
matical audience, we center our discussion around the theme of (derived)
functors between abelian categories.
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1. Derived categories, derived functors, and resolutions

In studying abelian categories, one immediately encounters the inescapable
fact that not every functor

F : A→ B

among them is exact: some are only left-exact (i.e. preserve kernels), some
are only right-exact (i.e. preserve cokernels), and some are neither left- nor
right-exact. For example, if we take A = B = ModR for a commutative ring
R, then for an arbitrary R-module M the functor

M ⊗R − : ModR → ModR

will always be right-exact but will not generally be left-exact.
In his groundbreaking “Tôhoku paper” [Gro57], Grothendieck introduced

an organizational framework for understanding and quantifying these failures
of exactness, based on the category Ch(A) of chain complexes in A. This
category provides a home for resolutions of objects of A: these are objects
which are “weakly equivalent” to our original objects of A, but which are
better behaved with respect to our given functor of interest (in a sense to be
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described shortly). One would now like to define the derived functor of F to
be the value of the induced functor

Ch(F ) : Ch(A)→ Ch(B)

on an appropriately chosen resolution.
However, such resolutions – and thence their values under the functor Ch(F )

– are generally only well-defined up to weak equivalence (a/k/a “quasi-isomorphism”).
There are two ways of remedying this situation.

• One may take homology of these values in Ch(B) to obtain well-defined
objects of B. For example, this technique leads to the definition of
TorR∗ (M,−) as the derived functor of M ⊗R −.

• Alternatively, writing Wq.i. ⊂ Ch(B) for the subcategory of quasi-
isomorphisms, one can consider the derived functor of F as taking
values in the derived category of B, i.e. the localization D(B) =
Ch(B)[W−1

q.i.].

In fact, the first approach can always be recovered from the second: by the
definition of quasi-isomorphism, homology descends along the canonical local-
ization functor Ch(B)→ D(B).

Of course, a derived functor should in particular be a functor, but it is not
immediately obvious that the process we have described defines one. In fact,
our desired functoriality will be a consequence of our definition of “resolution”.
The appropriate notion will vary from one application to another, but in any
case the crucial property will be that the restriction

Ch(A)res ↪→ Ch(A)
Ch(F )−−−→ Ch(B)

to the full subcategory of “resolutions” preserves weak equivalences. For exam-

ple, given any R-module N , any weak equivalence P•
≈→ Q• between projective

resolutions of N induces a weak equivalence

M ⊗R P•
≈→M ⊗R Q•

upon tensoring with M .1 Moreover, every object should admit a resolution:
indeed, in many cases (such as with model categories, as we will see in §2),
the inclusion Ch(A)res ↪→ Ch(A) even induces an equivalence

Ch(A)res[W−1
q.i.]

∼−→ Ch(A)[W−1
q.i.] = D(A)

1On the other hand, these objects are not generally weakly equivalent to M ⊗R N : this
is the entire point of resolving N in the first place.
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on localizations. In such a situation, we then obtain the derived functor D(F )
of the original functor F as an extension in the commutative diagram

A B

Ch(A)res Ch(A) Ch(B)

Ch(A)res[W−1
q.i.] D(A) D(B)

F

Ch(F )

∼ D(F )

of categories (which is well-defined up to natural isomorphism). The resulting
composite

A→ D(A)
D(F )−−−→ D(B)

is sometimes referred to as the total derived functor of F (recovering as it
does the “ith derived functor” of F upon postcomposition with the functor
Hi : D(B)→ B).

2. Model categories

By definition, the derived category D(A) = Ch(A)[W−1
q.i.] of an abelian

category A is the universal recipient of homological invariants. For example,
the derived category DR = D(ModR) is the target of the derived functor

ModR → DR
D(M⊗R−)−−−−−−→ DR

of the functor

M ⊗R − : ModR → ModR.

Correspondingly, the derived category enjoys a universal property as a cat-
egory. However, it tends to be quite difficult to make computations within
the derived category. In effect, this is because its universal property takes
place “one category-level higher” than do its actual objects and morphisms
themselves.

In order to discuss this phenomenon, it is convenient to introduce the no-
tion of a relative category : this is a (strict) category R equipped with a dis-
tinguished subcategory W ⊂ R of “weak equivalences” which is required to



4 AARON MAZEL-GEE

contain the subcategory R
∼= ⊂ R of isomorphisms. The category RelCat of

relative categories admits a localization functor

RelCat→ Cat

to the category Cat of (strict) categories (which we have already referred to in
§1), which is by definition left adjoint to the “minimal relative category struc-
ture” functor C 7→ (C,C

∼=). Given a relative category (R,W), its localization
R[W−1] – which is also in some contexts called its “homotopy category” – is
therefore equipped with a canonical localization functor

R→ R[W−1]

with the universal property that for any category C ∈ Cat, the restriction map

homCat(R[W−1],C)→ homCat(R,C)

defines an isomorphism onto the set of functors R → C which take the sub-
category W ⊂ R of weak equivalences into the subcategory C

∼= ⊂ C of isomor-
phisms.2 At one extreme, the localization R[(R

∼=)−1] of the minimal relative
category structure is therefore simply R itself, while at the other extreme, the
localization R[R−1] of the “maximal” relative category structure recovers the
groupoid completion of the category R.

Using this language, we can now illustrate the difficulty of making computa-
tions within the localization of a relative category, such as the derived category
D(A) = Ch(A)[W−1

q.i.] of an abelian category A.
We begin with the smallest possible example. Recall that a category with

a single object is completely specified by the monoid of endomorphisms of its
object; given a monoid G0, we write BG0 for the corresponding one-object
category. Under this correspondence, the group completion G of the monoid
G0 corresponds to the groupoid completion of BG0: that is, there is a canonical
isomorphism

BG ∼= BG0[(BG0)−1]

in Cat. But while the groupoid BG is easy to characterize by means of its uni-
versal property, it is hopelessly difficult to describe in concrete terms. Indeed,
understanding composition in BG amounts to understanding the multiplica-
tion law of G, but this is an intractable (in fact, computationally undecidable)
task, closely related to the so-called “word problem” for generators and rela-
tions in abstract algebra.

More generally, given a relative category (R,W) and any two objects x, y ∈
R, morphisms from x to y in the localization R[W−1] will be represented by

2The term “localization functor” is certainly overloaded, but it should always be clear
what is meant in any given situation.
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equivalence classes of “zigzags”

x
≈← • → • ≈← · · · ≈← • → • ≈← y

in (R,W) from x to y.3,4 In particular, note that elements of homR[W−1](x, y)
will generally fail drastically to be represented by elements of homR(x, y).

It was against this backdrop that Quillen introduced the general theory of
model categories in his seminal work [Qui67]. A model category M consists of
a relative category equipped with certain additional data that are collectively
called a model structure, which in particular specify full subcategories

Mc ↪→M←↩Mf

of cofibrant objects and of fibrant objects. Moreover, the axioms dictate that
every object of M is weakly equivalent to a cofibrant object and is also weakly
equivalent to a fibrant object. Thus, the following fundamental theorem
of model categories provides a direct and computable method of accessing
the hom-sets in the localization M[W−1].

Theorem 2.1 (Quillen). Let M be a model category, and suppose that x ∈M

is cofibrant and that y ∈M is fibrant. Then the canonical map

homM(x, y)→ homM[W−1](x, y)

is a surjection, which moreover becomes an isomorphism after applying either
equivalence relation of “left homotopy” or “right homotopy” to the source.

Thus, cofibrant objects should be thought of as being “good for mapping out
of”, while fibrant objects should be thought of as being “good for mapping
into”.5

3Strictly speaking, we should really be referring to the images of x and y under the
localization functor R → R[W−1], but (since we are speaking strictly) this induces an
isomorphism on sets of objects and so there is no real ambiguity.

4As an example of the equivalence relation on zigzags, if one of the backwards-pointing
weak equivalences happens to be an isomorphism, then the displayed zigzag must be de-
clared equivalent to the one obtained by replacing this weak equivalence with its (forwards-
pointing) inverse and then composing with any adjacent forwards-pointing arrows.

5For example, the relative category (ChR,Wq.i.) admits a model structure in which
bounded-below complexes of projective R-modules are cofibrant and all objects are fibrant,
and the “homotopy” relations can be computed via the usual notion of chain homotopy. In
fact, this same relative category admits another model structure, in which bounded-above
complexes of injectives are fibrant and all objects are cofibrant. The existence of these two
distinct model structures is responsible e.g. for the fact that we can compute Ext∗R(M,N)

either by applying the functor homR(−, N) to a projective resolution P•
≈→M or by applying

the functor homR(M,−) to an injective resolution N
≈→ I•.
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Beyond providing direct access to computations in derived categories, the
theory of model categories moreover bears directly on the construction of de-
rived functors. Given two model categories M and N, a Quillen adjunction
between them is an adjunction

F : M � N : G

satisfying certain conditions related to their respective model structures, and
a Quillen equivalence is a Quillen adjunction satisfying a further condition.
These notions are immensely useful for both constructing and computing de-
rived functors, as a consequence of the following result.

Theorem 2.2 (Quillen). Given a Quillen adjunction F : M � N : G, the
left adjoint F preserves weak equivalences between cofibrant objects of M and
the right adjoint G preserves weak equivalences between fibrant objects of N.
These induce derived functors via the commutative diagram

Mc[W−1] M[W−1] N[W−1]

Mc M N Nf

M[W−1] N[W−1] Nf [W−1]

∼ LF

F

G

RG ∼

of categories, which moreover participate in a canonical derived adjunction

LF : M[W−1] � N[W−1] : RG
on localizations. If this Quillen adjunction is moreover a Quillen equivalence,
then the derived adjunction is an adjoint equivalence of categories.

Thus, more generally, cofibrant objects should be thought of as left resolutions,
while fibrant objects should be thought of as right resolutions.

3. Nonabelian derived categories

Let us return to our discussion of functors F : A → B between abelian
categories. Recall that in good cases, the derived functor of F can be computed
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by passing to the induced functor

Ch(F ) : Ch(A)→ Ch(B)

on categories of chain complexes and then restricting to a subcategory of “res-
olutions” (whose precise nature depends on the situation at hand).

Let us restrict our attention for a moment to the subcategory Ch≥0(A) ⊂
Ch(A) of nonnegatively-graded chain complexes. Then, there is an equivalence

Ch≥0(A) ' sA

with the category of simplicial objects in A, i.e. the category sA = Fun(∆op,A)
of A-valued presheaves on the category ∆ of finite nonempty totally-ordered
sets.

This leads to an enormously fruitful idea: if we are interested in resolving
objects of a nonabelian category C, then the category sC = Fun(∆op,C) of
simplicial objects in C provides a reasonable substitute for the (nonexistent)
category of “nonnegatively-graded chain complexes in C”. Moreover, the cate-
gory sC still comes equipped with a subcategory W ⊂ sC of weak equivalences
(which reduces to that of quasi-isomorphisms in the abelian case), allowing us
to form the nonnegatively-graded nonabelian derived category of C as the lo-
calization

D≥0(C) = sC[W−1].6,7

As a first example, let us take C = Set to be the category of sets. Now, the
category sSet of simplicial sets admits a geometric realization functor

|−| : sSet→ Top

to the category of topological spaces: this uses a simplicial set as a recipe for
assembling a simplicial complex, with the structure maps between the various
constituent sets specifying the gluing data between topological simplices. In
this case, the subcategory W ⊂ sSet is pulled back from the subcategory
Ww.h.e. ⊂ Top of weak homotopy equivalences, and moreover the geometric
realization functor induces an equivalence

D≥0(Set) = sSet[W−1]
∼−→ Top[W−1

w.h.e.].

In other words, the nonnegatively-graded nonabelian derived category of sets
is nothing other than the classical homotopy category of topological spaces!

6Actually, this is all a very slight simplification of the situation: one must choose a
subcategory G ⊂ C of “projective generators”, and this determines the subcategory W ⊂ sC.
However, we will elide this point.

7In fact, it is also possible to define the full nonabelian derived category D(C) through
a more elaborate construction – the key notion is that of spectrum objects (in the sense of
stable homotopy theory) – but we will not pursue that here.
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In this sense, the category sSet of simplicial sets can be seen as a combinato-
rial presentation of the homotopy category Top[W−1

w.h.e.] of topological spaces,
and simplicial sets themselves can be seen as combinatorial presentations of
homotopy types.

In fact, the geometric realization functor participates in an adjunction

|−| : sSet � Top : Sing(−)•

with the singular simplicial set functor: given a topological space X ∈ Top,
the corresponding simplicial set Sing(X)• ∈ sSet = Fun(∆op, Set) is given by
taking the object [n] = {0, . . . , n} ∈∆op to the set

Singn(X) = homTop(∆n
top, X)

of continuous maps into X from the standard topological n-simplex ∆n
top.8

Moreover, there exist model structures on these two relative categories – the
Kan–Quillen model structure on sSet and the Quillen–Serre model structure
on Top – making this adjunction into a Quillen equivalence.9 In particular,
the category sSet is not merely a combinatorial presentation of the homotopy
category Top[W−1

w.h.e.]: its Kan–Quillen model structure moreover allows for
extremely efficient computations therein.

4. The homotopy theory of homotopy theories

In their radical and innovative paper [DK80], Dwyer–Kan turned the lens
of abstract homotopy theory onto itself, introducing a derived functor of the
localization functor RelCat→ Cat: this is a functor

RelCat→ CatsSet

8The functoriality of Sing(X)• : ∆op → Set arises from pulling back along certain con-
tinuous functions between the various topological simplices, which are defined by mimicking
the behavior of the corresponding morphisms in ∆ on vertices and then extending linearly.
In fact, these assemble into a cosimplicial object ∆•top : ∆→ Top, and we can consider the
functor

Sing(−)• = homlw
Top(∆•top,−)

as arising from taking “levelwise maps” out of this cosimplicial topological space.
9The derived left adjoint of this Quillen equivalence recovers the equivalence described

above: all objects of sSetKQ are cofibrant, so the restriction to the subcategory sSetcKQ ⊂
sSetKQ (as in the statement of Theorem 2.2) is already implicit.
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landing in the category of simplicially-enriched categories, i.e. in the category
of categories enriched in the category sSet of simplicial sets.10,11 As simplicial
sets can be considered as presentations of homotopy types, objects of CatsSet can
be considered as presentations of “categories enriched in homotopy types”.12

Of course, such a viewpoint immediately suggests a notion of “weak equiv-
alence” among simplicially-enriched categories; weak equivalence classes of
objects of CatsSet came to be known colloquially as homotopy theories, and the
corresponding localization

CatsSet[W
−1]

came to be known as the homotopy theory of homotopy theories.
As we have seen, such a definition is of rather limited use in and of itself: it is

generally extremely difficult to make computations in a localization. However,
in [Ber07], Bergner drastically improved the state of affairs by constructing a
model structure on CatsSet extending this relative category structure, providing
the first model category presenting the homotopy theory of homotopy theories.

Given a relative category (R,W), we denote its derived localization – also
known as its underlying homotopy theory – by

RJW−1K ∈ CatsSet[W
−1].

This power series notation is meant to indicate that the derived localiza-
tion contains “higher-order” information than does the ordinary localization
R[W−1] ∈ Cat. Indeed, the “homotopy category” functor

CatsSet → Cat

(which takes each hom-simplicial set (considered as a homotopy type) to its set
of path components) takes the subcategory W ⊂ CatsSet of weak equivalences
into the subcategory W ⊂ Cat of equivalences of categories, and the induced

10Simplicially-enriched categories are not quite the same thing as simplicial objects in
Cat: rather, CatsSet ⊂ s(Cat) defines a full subcategory on those objects whose “simplicial
set of objects” is constant.

11Their technique falls squarely in line with the “simplicial objects as resolutions” para-
digm described in §3: the derived localization functor is defined as the composite

RelCat→ s(RelCat)→ CatsSet

of a “free simplicial resolution” functor followed by a levelwise application of the ordinary
localization functor RelCat→ Cat.

12Actually, this is not quite correct: a simplicially-enriched category also contains
“homotopy-coherence data” for its composition (in a sense to be described in §5) which
are not present in a category enriched in homotopy types.
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diagram

RelCat CatsSet[W
−1]

Cat[W−1]

(R,W)7→RJW−1K

(R,W)7→R[W−1]

ho

commutes (up to natural isomorphism).

5. The zen of ∞-categories

Since the work of Bergner, there has been a proliferation of model categories
which are Quillen equivalent to (CatsSet)Bergner and thus likewise present the
homotopy theory of homotopy theories (by virtue of Theorem 2.2). Purely as
a matter of terminology, objects of any of these model categories – or more
precisely, their weak equivalence classes – have come to be referred to as ∞-
categories.

In fact, some of these other model categories of ∞-categories enjoy better
technical properties than does (CatsSet)Bergner (or does its close cousin (CatTop)Bergner),
making them far more useful in practice.13 However, in addition to these tech-
nical advantages, certain of these other model categories admit philosophical
advantages. In essence, the idea is that ∞-categories should not really be
thought of as being strictly enriched – in topological spaces, or simplicial sets,
or anything else: rather, they should be thought of as being enriched in the
∞-category of spaces, namely the equivalence class

S ∈ CatsSet[W
−1]

of either equivalent derived localization

TopJW−1
w.h.e.K ' sSetJW−1

KQK

13In essence, the issue is that the model category (CatsSet)Bergner behaves poorly with
respect to products: the product of two cofibrant objects will not generally be cofibrant.
This is a major issue, for it obstructs a clean construction of a “homotopically correct”
internal hom-object. At the level of the homotopy category CatsSet[W

−1], this should be an
object hom(C,D) with represented functor given by

homCatsSet[W−1](E,hom(C,D)) ∼= homCatsSet[W−1](E× C,D).

But since it’s not straightforward to obtain a cofibrant representative of the product E× C

at the level of the model category (CatsSet)Bergner, it becomes difficult to naturally construct
an object at that level that descends through the localization CatsSet → CatsSet[W

−1] to
represent the functor homCatsSet[W−1]((−)× C,D).
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of a relative category.14 In other words, the ∞-category S of spaces plays an
analogous role in ∞-category theory to the one played by the category Set in
1-category theory. In order to illustrate this idea, we briefly survey the theory
of quasicategories.

We begin by recalling the nerve construction, which is a functor

N(−)• : Cat→ sSet.

By definition, the category ∆ is a category of posets, which are particular
examples of categories; thus there is an inclusion functor ∆ ↪→ Cat. Then, the
nerve functor is given by the restricted Yoneda embedding: for any C ∈ Cat
and any [n] ∈∆, we define

N(C)n = homCat([n],C).

So the set N(C)n of n-simplices is the set of sequences of n composable mor-
phisms in C (with N(C)0 simply the set of objects), and for instance the mor-
phism {0, 1} → {0, 1, 2} in ∆ given by 0 7→ 0 and 1 7→ 2 determines a function

N(C)2 → N(C)1 which takes a pair of composable morphisms (c0
ϕ−→ c1, c1

ψ−→ c2)

to its composite (c0
ψϕ−→ c2). Thus, a 2-simplex of N(C)• may be thought of as

encoding a commutative triangle

c1

c0 c2

ψϕ

ψϕ

in C, and we may therefore think of it as a “witness” to the fact that the
morphism ψϕ is the composite of the morphisms ϕ and ψ. As composition in
the category C is uniquely defined, it follows that for any two “composable 1-
simplices” of N(C)• (such as ϕ and ψ as above), there exists a unique 2-simplex
extending them (such as the 2-simplex above).

Now, in the setting of simplicially-enriched categories, the nerve functor can
be enhanced to the homotopy-coherent nerve functor, denoted

Nhc(−)• : CatsSet → sSet.

Rather than describe this in full, we will simply indicate its values in the
bottom few dimensions. For a simplicially-enriched category C ∈ CatsSet, we
once again have that the set Nhc(C)0 of 0-simplices is given by the set of objects
of C, and that the set Nhc(C)1 of 1-simplices is given by the set of morphisms
of C (i.e. the 0-simplices of its various hom-simplicial sets, or equivalently the
morphisms in its underlying unenriched category). However, the set Nhc(C)2

14In fact, the∞-category of spaces admits various universal characterizations which make
no reference whatsoever to topological spaces or to simplicial sets: for instance, it is the free
cocompletion of the terminal ∞-category.
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of 2-simplices is more interesting: for any three morphisms c0
ϕ−→ c1, c1

ψ−→ c2,

and c0
ρ−→ c2 in C, a 2-simplex

c1

c0 c2

ψϕ

ρ

is determined by a 1-simplex in the simplicial set homC(c0, c2) connecting the
0-simplices ψϕ and ρ. Thinking of such a 1-simplex as a “path” in this “hom-
space”, we may therefore think of such a 2-simplex as a witness to the homotopy
commutativity of this triangle.

Of course, one such 2-simplex of Nhc(C)• can be obtained simply by taking
ρ = ψϕ (and by taking the “path” to be the constant one). Thus, any two
“composable 1-simplices” of Nhc(C)• admit some 2-simplex extending them.
However, in the abstract simplicial set Nhc(C)•, it is no longer possible to tell
which 2-simplices arose from “strict composition” and which 2-simplices arose
from “homotopy-coherent composition”. And indeed, this is the entire point:
any of the possible 2-simplex extensions of our two composable 1-simplices
should be considered to be “just as good” as any other. In other words, the
strict composition of composable 1-simplices in this simplicial set is not even
well-defined.

The homotopy-coherent nerve Nhc(C)• is the canonical example of a quasi-
category. This is nothing other than a simplicial set C in which, for all n ≥ 2,
any string of n composable 1-simplices admits some extension to an n-simplex.
If this string is selected by a morphism(

∆{0,1} q
∆{1}
· · · q

∆{n−1}
∆{n−1,n}

)
→ C

of simplicial sets, then such an n-simplex ∆n → C may be thought of as a
witness to the fact that its 1-subsimplex

∆{0,n} → ∆n → C

is a composite of the string. Of course, in general such an extension will not
be unique: indeed, all such extensions (for all strings of all lengths) will be
unique precisely when C is the nerve of an ordinary category. Nevertheless,
there is a strong sense in which such an extension is “essentially unique”: the
set of extensions of a string naturally extends to a simplicial set, which will
always be contractible when considered as a space (i.e. as an object of the
∞-category S ' sSetJW−1

KQK). Quasicategories are the fibrant objects of the
Joyal model structure on the category sSet, to which the homotopy-coherent
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nerve functor defines a right Quillen equivalence

sSetJoyal ← (CatsSet)Bergner : Nhc(−)•.

Of course, the∞-category of spaces is a rather abstract object. By contrast,
its objects can be presented by topological spaces or by simplicial sets, both
of which notions are quite concrete. For instance, one can speak of the “un-
derlying set” of a topological space, whereas a space admits no such notion:
a weak equivalence between topological spaces will not generally respect their
underlying sets.

It would therefore appear to afford much more control to work directly with
topologically- or simplicially-enriched categories, rather than considering them
only as being enriched in the∞-category of spaces (e.g. so that one can speak
of the “underlying set” of a hom-space). Thus, the idea that an ∞-category
should only be considered as being enriched over spaces runs directly against
intuition, and against deeply-ingrained human urges for control.

However, the sheer power of this idea is impossible to overstate .
To illustrate this striking phenomenon, we give two examples. For con-

creteness, both will concern the relationship between the 1-category Top of
topological spaces and the ∞-category S of spaces. For the present purposes,
it will be convenient to consider the ∞-category of spaces as being presented
by the homotopy-coherent nerve of the topologically-enriched category of CW
complexes (although we only really consider it as a quasicategory at all to
emphasize the non-strictness of its composition).15,16

Our first example of the power of ∞-categorical thinking illustrates the
following paradigm: working ∞-categorically, it’s impossible to say the wrong
thing.

15Both functors in the adjunction |−| : sSet � Top : Sing(−)• preserve finite products;
applying them “locally” (i.e. to each hom-object individually) therefore defines an adjunction
CatsSet � CatTop, and one can define the homotopy-coherent nerve of a topologically-enriched
category simply by precomposing with its right adjoint.

16There is a notion of a model category being compatibly enriched over a given monoidal
model category (the definition of which itself requires certain compatibilities between the
model structure and the monoidal structure); for instance, both TopQS and sSetKQ are
compatibly self-enriched. Given a model category M which is compatibly enriched over
either TopQS or sSetKQ and writing M for its underlying unenriched model category, the

underlying ∞-category MJW−1K is presented by the TopQS- or sSetKQ-enriched category

Mcf of bifibrant (i.e. cofibrant and fibrant) objects. In particular, if either x ∈ M is
not cofibrant or y ∈ M is not fibrant, then the enriched hom-object homM(x, y) will not
generally have the “correct” weak equivalence class. In TopQS, all objects are fibrant and
CW complexes are cofibrant. In fact, they are not all of the cofibrant objects (these are
“cell complexes and retracts thereof”), but their full inclusion into the topologically-enriched

category Topcf

QS
is a weak equivalence (and hence presents an equivalence of ∞-categories),

so we’ve just restricted to them for simplicity of terminology.
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Given a based CW complex X, its suspension is defined to be the pushout

X CX

CX ΣX

with itself of the inclusion of X into the cone CX = (X× [0, 1])/(X×{1}) (as
the subspace X ×{0}). This is an extremely useful construction in homotopy
theory: for instance, it participates in a suspension isomorphism

H̃i(X) ∼= H̃i+i(ΣX)

in (reduced) homology.
However, this definition itself is clearly not the “true” thing. After all, the

cone CX is contractible, and indeed any other two contractible CW complexes
into which X maps as closed inclusions would function just as well: more
precisely, the resulting pushout would be weakly equivalent to the suspension
ΣX. One gets the distinct sense that this “wants to be” the pushout

X pt

pt ΣX

along the unique terminal maps into (what end up being) the two cone points
of ΣX – the only problem being that this diagram of topological spaces simply
doesn’t commute, let alone define a pushout.

On the other hand, this canonically defines a commutative diagram

X pt

pt ΣX

'

'

in the ∞-category of spaces! First of all, the map X → ΣX is given by the
equatorial inclusion. Then, the homotopy-commutativity of each of the two
triangles is selected by the canonical homotopy

X × [0, 1]→ CX

given by the formula

(x, t) 7→ (x, t).

That is, this postcomposes to define homotopies

X × [0, 1]→ CX → ΣX,
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which select canonical paths in the hom-topological space homTop(X,ΣX) be-
tween the equatorial inclusion and the inclusion of one or the other cone point.

Even better, this commutative square is a pushout in the ∞-categorical
sense. Working ∞-categorically, the universal property of a pushout

A C

B B q
A
C

has no choice but to read: “an object which, when mapped into a test object Y ,
corepresents the data of a map B → Y , a map C → Y , and a path witnessing
the agreement of the two composites A → B → Y and A → C → Y ”.
Returning to our original example, we see that this is precisely the functor
that the suspension ΣX was born to corepresent all along.

Finally, we reach our “impossible to be wrong” paradigm: for any con-
tractible CW complexes B and C and any pair of maps X → B and X → C,
the ∞-categorical pushout

X C

B B q
X
C

is canonically equivalent (in the ∞-category of spaces) to the suspension ΣX.
This is in stark contrast to the situation in the 1-category Top of topological
spaces, where one must demand that the maps X → B and X → C be
closed inclusions. From this point of view, we learn the additional lesson that
working 1-categorically makes us want to force something which is naturally
homotopy-coherent to be unnaturally strict.

A pushout among CW complexes in which the two maps are closed inclusions
is an example of a homotopy pushout in the model category TopQS, which is
in turn a particular example of a homotopy colimit. The theory of homotopy
colimits in general model categories is well-studied, but it is fairly subtle and
unreasonably technical: for instance, a homotopy colimit in a model category
M over an indexing category I should be the left derived functor of the colimit
functor

colim : Fun(I,M)→M,

but the requisite model structure needed to actually obtain this (i.e. a model
structure on Fun(I,M) for which this is a left Quillen functor) need not even
exist. But more importantly, even in the extremely simple case of homotopy
pushouts, these point-set considerations obscure the true and essential ∞-
categorical meaning of the suspension construction X 7→ ΣX, which – tying
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everything together – actually gives a conceptual explanation for the suspen-
sion isomorphism in the first place.

Our second example of the power of ∞-categorical thinking illustrates the
following paradigm: homotopy-coherence appears everywhere, and working∞-
categorically sweeps homotopy-coherence into the ambient machinery.

Given a based topological space X = (X, x), its based loopspace is the
topological space

ΩX = {γ : [0, 1]→ X : γ(0) = γ(1) = x},

or equivalently the topological space homTop∗
(S1, X) of based maps from the

circle

S1 = [0, 1]/(0∼1)

into X.17 By adjunction, there is a natural isomorphism

π0(ΩX) ∼= π1(X)

between the set of path components of ΩX and the fundamental group of X.
Moreover, the group structure on the fundamental group π1(X) comes from
concatenation of (homotopy classes of) based loops. For instance, given two
based loops γ1, γ2 ∈ ΩX, we can define a new based loop (γ1 ∗ γ2) ∈ ΩX to be
given by the formula

(γ1 ∗ γ2)(t) =

{
γ1(2t), 0 ≤ t ≤ 1/2
γ2(2t− 1), 1/2 ≤ t ≤ 1.

However, this formula is just the most straightforward option: any choice of
“pinch map”

S1 ∆−→ S1 ∨ S1

gives rise to a concatenation operation

ΩX × ΩX
µ−→ ΩX

which defines the same group structure on the set π0(ΩX) of path components.
These considerations strongly suggest that the based loopspace ΩX should

itself be some manner of “group”, in which the multiplication law is given
by concatenation of loops. However, a moment’s reflection reveals that it is
impossible to make this concatenation operation strictly associative, no matter
which pinch map we choose.

On the other hand, in a sense, this failure of associativity is not so severe.
Suppose that we fix a pinch map ∆ on S1 inducing a multiplication map µ on

17In fact, this is a completely dual object to the suspension ΣX: it’s the ∞-categorical
pullback of the diagram {x} → X ← {x}.
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ΩX. Then, the associativity diagram

(ΩX)×3 (ΩX)×2

(ΩX)×2 ΩX

idΩX×µ

µ×idΩX µ

µ

does not strictly commute, but it commutes up to homotopy : in order to
specify such a homotopy, it suffices to choose once and for all a homotopy
witnessing the homotopy-commutativity of the diagram

S1 S1 ∨ S1

S1 ∨ S1 S1 ∨ S1 ∨ S1,

∆

∆ idS1∨∆

∆∨idS1

and this can be done straightforwardly (in essentially the same manner that
one proves that the fundamental group is associative – it can be slightly easier
to visualize the analogous picture with intervals instead of wedges of circles).

This is concordant with the core philosophy of higher category the-
ory : rather than merely positing the existence of a homotopy witnessing the
homotopy-commutativity of the associativity diagram, we should instead keep
track of such a homotopy as additional data.

These observations are sufficient for producing the group structure on π0(ΩX),
but they do not yet allow us treat ΩX as a “group” itself. For instance, sup-
pose that we would like to concatenate four loops γ1, γ2, γ3, γ4 ∈ ΩX. So far,
we have only chosen a multiplication

µ : pt→ homTop((ΩX)×2,ΩX)

along with an “associator”, i.e. a path

µ3 : [0, 1]→ homTop((ΩX)×3,ΩX)

between the two resulting composites µ ◦ (idΩX × µ) and µ ◦ (µ × idΩX). As
it turns out, µ determines five iterated multiplication maps (ΩX)×4 → ΩX,
which are in turn related by application of the associator at various stages:
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these can be schematically organized into the famous “Mac Lane pentagon”

((ab)c)d

(a(bc))d (ab)(cd)

a((bc)d) a(b(cd))

in which the arrows indicate “front-to-back” associations (xy)z → x(yz).18

This can in turn be organized as a map from the boundary of a pentagon
(thought of as a 1-dimensional simplicial complex) into the enriched hom-
topological space

homTop((ΩX)×4,ΩX).

As this may a priori select a nontrivial loop, it is clear that we cannot yet de-
clare our multiplication µ to be “unambiguously associative up to homotopy”.

In his thesis [Sta61], Stasheff uncovered a strong sense in which the multipli-
cation µ on ΩX is indeed “unambiguously associative up to homotopy”, using
what are now called the Stasheff associahedra. This is a sequence of convex
polytopes {(A∞)n}n≥2: it begins with (A∞)2 = pt and (A∞)3 = [0, 1], and so
far we have observed maps

µ2 : (A∞)2 → homTop((ΩX)×2, X)

and
µ3 : (A∞)3 → homTop((ΩX)×3, X),

where the value of µ3 on the boundary of (A∞)3 is determined by µ2. Moreover,
(A∞)4 is precisely the (filled-in) pentagon we have seen above, and we can
similarly choose a map

µ4 : (A∞)4 → homTop((ΩX)×4, X)

(which can likewise be determined “universally” by studying the pinch map ∆
and its iterates) which extends the map on the boundary of (A∞)4 determined
by µ2 and µ3. As (A∞)4 is convex and in particular contractible, this gives a
precise sense in which all four-fold multiplications are equivalent, up to con-
tractible ambiguity. Of course, this pattern continues: the maps µ2, . . . , µn−1

18This diagram appeared in Mac Lane’s foundational study of monoidal categories
[ML63], hence the name.
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determine a map from the boundary of (A∞)n into homTop((ΩX)×n,ΩX), and
it is possible to (universally) choose an extension over this contractible topo-
logical space. The relationships between these polytopes which inductively
determine the maps on their boundaries assemble into certain structure maps
which makes them into an operad (namely the A∞ operad), and the compatible
sequence of maps

{µn : (A∞)n → homTop((ΩX)×n,ΩX)}

makes the topological space ΩX into an algebra over this operad.19,20

In fact, not only does the based loopspace of a based topological space
carry the structure of an A∞ algebra, but in a sense this structure character-
izes based loopspaces: after we restrict to connected based spaces for obvious
reasons, the based loopspace functor

Ω : Top≥1
∗ → Top∗

defines an equivalence

Ω : Top≥1
∗ [W−1

w.h.e.]
∼−→ Alggp

A∞(Top∗)[W
−1
w.h.e.]

onto the homotopy category of grouplike A∞ topological spaces, i.e. those
A∞ algebras Y ∈ Top∗ for which the induced multiplication on π0(Y ) makes
it into a group (instead of just a monoid). In other words, a grouplike A∞
structure on a topological space allows us to construct a delooping of that
topological space (up to weak homotopy equivalence). The analogous result is
false for “grouplike h-spaces”, i.e. group objects in Top[W−1

w.h.e.], for which we
are only assured the existence of a homotopy making the associativity diagram
commute (in the homotopy category). Thus, it is indeed only by keeping track
of the homotopies making the (higher) associativity diagrams commute that
we can construct a delooping.

Now, the A∞ operad is an example of a (“non-symmetric”) operad in topo-
logical spaces. Another example of an object in this category is the associative
operad, denoted Ass ∈ Opns(Top). This object is much simpler than A∞: for
all n ≥ 0, we simply have Assn = pt. In other words, Ass parametrizes strictly
associative multiplications.

19Actually, we have only parametrized n-fold multiplications for n ≥ 2, whereas operads
begin in degree 0. To extend this to a true A∞ algebra structure, we should additionally
specify the map (A∞)0 = pt→ homTop((ΩX)×0,ΩX) ∼= ΩX selecting the basepoint (which
functions as the “identity element” for the multiplication) as well as the map (A∞)1 = pt→
homTop((ΩX)×1,ΩX) selecting the identity map on ΩX (the “1-fold multiplication”).

20Operads were introduced by May in his landmark work [May72], in which he charac-
terized all iterated loopspaces. As we will see presently, the A∞ operad completely governs
1-fold loopspaces; this is also called the E1 operad, and more generally the En operad
completely governs n-fold loopspaces for all n (including n =∞, in a suitable sense).
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In fact, the category Opns(Top) of these itself admits a model structure,
in which the weak equivalences are determined “level by level” (in TopQS).
Moreover, Ass is the terminal object of Opns(Top), and the unique map A∞ →
Ass is a cofibrant replacement (and in particular, a weak equivalence).

This is relevant for the following reason. First of all, any object Y ∈ Top
determines an endomorphism operad

Endns(Y ) ∈ Opns(Top)

given by
Endns(Y )n = homTop(Y ×n, Y ).

Moreover, as suggested by the above discussion, for an arbitrary operad O ∈
Opns(Top), one can define an O-algebra structure on Y to be a morphism

O→ Endns(Y )

of operads. Thus, to say that A∞ is “good for mapping out of” (in a way
that Ass is not) is to say that certain topological spaces (e.g. and i.e. based
loopspaces) “want” to be associative algebras, but are in fact only A∞ algebras.

In fact, the term “A∞ operad” has come to refer to any cofibrant replace-
ment of the associative operad. Moreover, a weak equivalence between cofi-
brant operads induces a Quillen equivalence between their model categories
of algebras. Thus, we see that the point-set A∞ operad in topological spaces
is not the “true” thing: the homotopy category of based loopspaces can be
organized as the homotopy category of grouplike algebras over any cofibrant
replacement of the associative operad.

By now, the punch line should be clear: based loopspaces are associative
algebras, but only when considered in the ∞-category of spaces! Moreover,
the above equivalence of homotopy categories lifts to an equivalence

Ω : S≥1
∗

∼−→ Alggp
Ass(S) = Grp(S)

of ∞-categories. Thus, as advertised, the homotopy-coherence inherent in the
very foundations of∞-categories turns a complicated and un-“true” assertion
about not-even-canonical point-set operads into the simple, canonical, and
compelling statement that we were really after all along: based loopspaces of
pointed spaces determine group objects in spaces.21

On the other hand, there is another approach to studying the homotopy
category of based loopspaces: in fact, it turns out that the canonical map
A∞ → Ass also induces an equivalence

Alggp
Ass(Top)[W−1

w.h.e.]
∼−→ Alggp

A∞(Top)[W−1
w.h.e.]

21The fact that this induces an equivalence when we restrict to connected based spaces is a
homotopical form of Koszul duality, which features prominently in the study of deformation
theory.
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of homotopy categories (even though Ass ∈ Opns(Top) is not cofibrant). In
particular, any grouplike A∞ algebra in Top is weakly equivalent (as an A∞
algebra) to a topological group. Thus, one can also study the homotopy cat-
egory of based loopspaces by studying the homotopy category of topological
groups.

However, it is only due to the simplicity of the A∞ operad that such stricti-
fication is possible. For instance, a cofibrant replacement of the commutative
operad

Comm ∈ Op(Top)

(which can only be defined as a “symmetric” operad – in fact, it is likewise the
terminal object of Op(Top)) is called an “E∞ operad”, and restriction along
the canonical map E∞ → Comm determines a functor

AlgComm(Top)→ AlgE∞(Top)

which does not induce an equivalence on homotopy categories. In particular,
the induced functor

AlgComm(Top)[W−1
w.h.e.]→ AlgE∞(Top)[W−1

w.h.e.]

on homotopy categories is not essentially surjective: not every topological
space equipped with a homotopy-coherently commutative and associative mul-
tiplication can be rigidified to one with a strictly commutative and associative
multiplication.

From a more philosophical perspective, we posit that it should feel morally
reprehensible to attempt to force a based loopspace to be something which it
is not: it is truly and essentially a homotopy-coherent object, and its strictifi-
ability is ultimately just an intriguing coincidence.

In fact, recall from §2 that a one-object category is completely specified by
the monoid of endomorphisms of its unique object. In an identical fashion, a
one-object topologically-enriched category is completely specified by the topo-
logical monoid of endomorphisms of its unique object. Thus, the coincidence
that based loopspaces can be rectified to topological groups is (up to questions
of grouplikeness) nothing other than a “one-object” version of the coincidence
that topologically-enriched categories present∞-categories! We may therefore
view this connection as justifying our philosophical assertion that we never
should have considered ∞-categories as having strictly associative composition
in the first place.22

22Recall that before extolling the philosophical advantages of homotopy-coherent models
for ∞-categories (over strict ones), we actually began this section by mentioning certain
technical advantages that they also enjoy. In fact, it turns out that these technical advan-
tages can themselves be seen as arising from the fact ∞-categories fundamentally “want”
to be homotopy-coherent objects. Thus, these technical and philosophical advantages are
actually two sides of the same coin.
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Of course, these two examples of the power of ∞-categorical thinking are
merely toys, which we chose in order to highlight the differences between work-
ing strictly and working homotopy-coherently. The real fun begins when one
actually starts to use ∞-category theory, at which point the world becomes
a magical place: one’s power to make new definitions is limited only by one’s
imagination, and one’s ability to prove new theorems is limited only by the
clarity of one’s understanding (at least as far as the purely formal aspects are
concerned). The many fussy details that arise when one attempts to use point-
set techniques to work homotopy-coherently simply melt away: they were in
fact irrelevant all along to the true and underlying mathematics, and their
disappearance into the ambient machinery brings with it a harmony that is
only possible when intuition and language are once again aligned. Thus, para-
doxically, by discarding such emotional crutches as underlying sets and strict
composition and by embracing the apparent chaos and uncontrol of homotopy-
coherence, we acquire a measure of power of which previous generations of
mathematicians could barely have dreamed.

Appendix A. The praxis of ∞-categories

In case it was not evident from the discussion of §5, we now make an explicit
clarification: in reality, a large number of users of ∞-categories throughout
mathematics do not actually choose any particular model category of them,
instead working in a purely formal manner and only making reference to uni-
versal constructions (such as limits, colimits, adjoint functors, etc.).

Most pragmatically, this (absence of) choice can be justified by declaring
that such manipulations are “secretly” taking place among quasicategories.
Indeed, although quasicategories are in the end nothing more than certain sim-
plicial sets, they collectively assemble into a quasicategory of quasicategories,
in which e.g. it is only possible to speak of homotopy-coherent composition
of functors between them. Moreover, the theory of quasicategories has been
developed extensively, most notably by Joyal and Lurie. As a result, nearly
any 1-categorical maneuver one might wish to imitate (e.g. an appeal to the

In order to see this, recall that the technical disadvantages e.g. of simplicially-enriched
categories are ultimately due to the failure of the cartesian product of two cofibrant objects
to again be cofibrant. Indeed, this failure is in turn due to the fact that the “correct”
hom-set must encode all homotopy-coherent functors. If the target object already accounts
for this homotopy-coherence (as does e.g. a quasicategory), then the source object doesn’t
need to (and indeed, all objects of sSetJoyal are cofibrant). But if the target object is forced
to be strict (as is e.g. a simplicially-enriched category), then to get the correct hom-set we
need to account for our desired homotopy-coherence in the source. As taking a product
generally introduces new composites that weren’t present in either factor individually (e.g.
consider the product [1] × [1]), it should come as no surprise that products of cofibrant
simplicially-enriched categories don’t generally remain cofibrant.
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adjoint functor theorem) can be rigorously performed in the quasicategorical
setting.23

The “underlying∞-category” of this quasicategory – or indeed, of e.g. either
relative category sSetJoyal or (CatsSet)Bergner – is denoted Cat∞ and is referred
to as the ∞-category of ∞-categories.

Appendix B. Model categories and ∞-categories

A technically advantageous model category of ∞-categories is absolutely
essential for the full and rigorous development of the theory of ∞-categories.
Thus, the theory of∞-categories rests firmly on the theory of model categories.

However, both can be used as frameworks for abstract homotopy theory.
On the one hand, a model structure on a relative category (M,W) ∈ RelCat
provides an efficient method of making computations not just in its localization

M[W−1] ∈ Cat

but in its derived localization

MJW−1K ∈ Cat∞

(which is indeed its localization when considered as a relative ∞-category).
On the other hand, essentially every ∞-category of lasting interest can be
presented by a model category M in this sense. It is therefore often analogized
that model categories are to∞-categories as atlases are to manifolds: a model
category is a convenient presentation of an∞-category, but not every operation
that one might like to perform in an ∞-category can be presented within a
given model category.24

By no means does the theory of ∞-categories render the theory of model
categories obsolete, even beyond the obvious issue of logical reliance. To
wit, model categories are still an indispensable component of the homotopical
toolkit because it is essentially impossible to perform any non-formal compu-
tations using ∞-category theory alone.

To give an example of this, we return to the original thread with which our
story began. Given an abelian category A, the relative category (Ch(A),Wq.i.)
is the natural home of “resolutions” of objects of A. Out of this, we can form

23For a beautiful and compelling introduction to quasicategories, we refer the interested
reader to [Lur09, Chapter 1].

24However, the analogy breaks down quickly: for example, the existence of a model
category presenting an ∞-category implies the existence of all limits and colimits in the
latter (or at least the finite ones, depending on which variant of the definition “model
category” one chooses). As a result, not every ∞-category can be presented by a model
category.
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the derived ∞-category of A, namely the ∞-categorical localization

Ch(A)JW−1
q.i.K ∈ Cat∞

of this relative category. This admits a canonical functor

Ch(A)JW−1
q.i.K→ Ch(A)[W−1

q.i.],

which witnesses the ordinary localization Ch(A)[Wq.i.] as the homotopy cat-
egory of the ∞-categorical localization (obtained by applying the functor
π0 : S → Set “locally” (i.e. to each hom-space individually)); the derived
∞-category of A is thus a refinement of the ordinary derived category, and we
will henceforth reappropriate the notation

D(A) = Ch(A)JW−1
q.i.K

accordingly.
Now, suppose we are given two objects M,N ∈ A, and suppose we would

like to understand the hom-space

homD(A)(M,N).

Though it arises from a modern construction, this space is often of classical
interest: for instance, if A = ModR, then its homotopy groups are precisely
the Ext groups Ext∗R(M,N). However, we are once again faced with precisely
the same issue that we confronted in §2: the derived ∞-category admits a
universal characterization as an∞-category, but this abstract characterization
takes place at the wrong “category-level” for direct computation within it to
be even remotely possible. Rather, it remains as necessary as ever to take
resolutions, i.e. to make use of a model structure on the relative category
(Ch(A),Wq.i.). For instance, if A = ModR, then it is necessary to take either
a projective resolution of M or an injective resolution of N .25

On the other hand,∞-categories make possible a number of obviously desir-
able maneuvers which model categories do not accommodate (or do not easily
accommodate). The consideration of functors is surely the most important
example.

Given two ∞-categories C and D, it is utterly straightforward to define
the ∞-category Fun(C,D) of functors from C to D (whose morphisms are
natural transformations). For example, if C and D are quasicategories which
respectively present C and D, then the ∞-category Fun(C,D) is presented by

25On the other hand, it must also be said that many operations in the literature which
happen to be performed within model categories are actually essentially formal and hence
could be done equally well – or perhaps better, in the interest of conceptual clarity – in
their underlying ∞-categories.
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the internal hom-object homsSet(C, D) in simplicial sets. As an ∞-category,
this represents the desired functor

E 7→ homCat∞(E,Fun(C,D)) ' homCat∞(E× C,D);

there’s nothing more to it.
By contrast, almost without exception the only meaningful “morphisms” be-

tween model categories are given by Quillen adjunctions. Moreover, a Quillen
adjunction

M � N

between model categories induces not just a derived adjunction M[W−1] �
N[W−1] (as described in Theorem 2.2) but an ∞-categorical adjunction

MJW−1K � NJW−1K

between underlying ∞-categories. Thus, model categories provide an acutely
restrictive framework if one is interested in non-adjoint functors between un-
derlying ∞-categories.

However, given a diagram category I and a model category M, it is some-
times possible to endow the functor category Fun(I,M) with a “pointwise”
model structure (i.e. one whose weak equivalences are precisely those natural
transformations whose components are all weak equivalences in M). For exam-
ple, under certain (often-satisfied) restrictions on M, there exists a projective
model structure Fun(I,M)proj, while under certain (still often-satisfied) further
restrictions on M there also exists an injective model structure Fun(I,M)inj.
When they exist, these model structures can be used to compute homotopy
co/limits, as they participate in Quillen adjunctions

colim : Fun(I,M)proj � M : const

and
const : M � Fun(I,M)inj : lim .

Alternatively, if I is a Reedy category (which condition is quite restrictive but is
satisfied for a reasonably large class of examples of practical interest, including
e.g. the categories ∆ and ∆op), then for any model category M there exists a
Reedy model structure Fun(I,M)Reedy. However, in general the Reedy model
structure need not be compatible with either the colimit functor or the limit
functor in the sense described above.

As should be clear from the complexity of this discussion, in practice these
pointwise model structures can be a nuisance. For instance, there does not
generally exist such a model structure on Fun(I,M) which is compatible with
both the colimit functor and the limit functor, and so as a result one must pass
through the Quillen equivalence

id : Fun(I,M)proj � Fun(I,M)inj : id
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to mediate between the opposite “handedness” of these two model structures.
Moreover, this entire discussion only allows I to be a diagram 1-category : it
is extremely difficult to work with diagrams in a model category which are
meant to present diagrams indexed by a more general ∞-category.
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