The Steenrod algebra and its applications – talk 1
Aaron Mazel-Gee
Tuesday Sept. 28, 2010

These talks have been lifted shamelessly from the excellent book *Cohomology Operations and Applications in Homotopy Theory* by Mosher & Tangora. Pretty much everything here has been copied from that book, except that I added a bunch of mistakes.

The idea of algebraic topology

Question. Is there a retraction \(r : D^n \to S^{n-1} \)?

We can write this as

\[
\begin{array}{ccc}
S^{n-1} & \xrightarrow{i} & D^n \\
\downarrow{\omega} & & \downarrow{r} \\
S^{n-1} & &
\end{array}
\]

By applying the functor \(H_{n-1}(\cdot; \mathbb{Z}) \), we can answer this question in the negative.

Question. For \(n > m \), is there a map \(\mathbb{R}P^n \to \mathbb{R}P^m \) which is an isomorphism on \(\pi_1 \)?

The answer is again no, but now we need to use cohomology: \(H^*(\mathbb{R}P^n; \mathbb{Z}_2) = \mathbb{Z}_2[\alpha_n]/\alpha_n^{n+1} = 0 \), and the condition on \(\pi_1 \) implies that the induced map \(H^*(\mathbb{R}P^m; \mathbb{Z}_2) \to H^*(\mathbb{R}P^n; \mathbb{Z}_2) \) has \(\alpha_m \mapsto \alpha_n \). But this is impossible, since the induced map must be a ring homomorphism.

We will employ a particular collection of much finer structures, called *cohomology operations*, to prove fancier things and answer much harder questions. (Hopefully by the third talk we’ll be able to calculate a bunch of homotopy groups of spheres, and our end goal is the Adams spectral sequence.) A cohomology operation of type \((\pi, n; G, m)\) is a natural transformation of functors

\[H^n(\cdot; \pi) \to H^m(\cdot; G). \]

Background

For any space \(X \), we have the *Hurewicz homomorphism* \(h : \pi_1(X) \to H_1(X; \mathbb{Z}) \), obtained by considering the image of a sphere as an integral chain. We then have

Theorem (Hurewicz). For a connected space \(X \):

- \(h : \pi_1(X) \to H_1(X; \mathbb{Z}) \) is abelianization, i.e. \(H_1(X; \mathbb{Z}) = \pi_1(X)/[[\pi_1(X), \pi_1(X)] \);
- if \(\pi_1(X) = 0 \), then \(h : \pi_2(X) \to H_2(X; \mathbb{Z}) \) is an isomorphism;
- if \(\pi_1(X) = \pi_2(X) = 0 \), then \(h : \pi_3(X) \to H_3(X; \mathbb{Z}) \) is an isomorphism;
- if \(\pi_1(X) = \pi_2(X) = \pi_3(X) = 0 \), then \(h : \pi_4(X) \to H_4(X; \mathbb{Z}) \) is an isomorphism;
- etc.
Loosely, we can summarize this as saying that the lowest-dimension Hurewicz homomorphism which is nontrivial is an isomorphism, except if \(\pi_1(X) \) is nonabelian in which case it’s as close to an isomorphism as it can get.

For any abelian group \(\pi \) and any natural number \(n \), the Eilenberg-Maclane space \(K(\pi, n) \) is characterized (up to homotopy equivalence) by the property that \(\pi_n(K(\pi, n)) = G \) and \(\pi_i(K(\pi, n)) = 0 \) for \(i \neq n \). These spaces represent cohomology; that is, there is a bijection

\[
H^n(X; \pi) \cong [X, K(\pi, n)],
\]

where the brackets denote homotopy classes of maps. If we are careful, this can be made into a group isomorphism.

The universal coefficient theorem for cohomology with coefficients in a group \(\pi \) can be expressed as a sexseq

\[
0 \to \text{Ext}(H_{n-1}(X; \pi), \pi) \to H^n(X; \pi) \to \text{Hom}(H_n(X; \pi), \pi) \to 0.
\]

This says that while we’d expect \(H^n(X; \pi) \) to just be \(\text{Hom}(H_n(X; \pi), \pi) \) (since to get cohomology you just dualize your chain complexes), in fact this is almost true but there’s an extra correction term.

However, if \(X \) is \((n-1)\)-connected and \(\pi = \pi_n(X) \), then by the Hurewicz theorem \(H_{n-1}(X; \pi) = 0 \), and so in fact we do get an isomorphism \(H^n(X; \pi) \cong \text{Hom}(H_n(X; \pi), \pi) \). In this case, the Hurewicz homomorphism \(h : \pi_n(X) \to H_n(X; \pi) \) is an isomorphism and we have \(h^{-1} \in \text{Hom}(H_n(X; \pi), \pi) \). This corresponds (under the isomorphism above) to what we call the fundamental class \(i_X \in H^n(X; \pi) \) of \(X \). In particular, we have a fundamental class \(i_n \in H^n(K(\pi, n); \pi) \), and in fact a map \(f : X \to K(\pi, n) \) corresponds under the bijection \(H^n(X; \pi) \cong [X, K(\pi, n)] \) to the cohomology class \(f^*(i_n) \in H^n(X; \pi) \).

Since cohomology operations are natural, an operation of type \((\pi, n; G, m) \) is represented as a map \(K(\pi, n) \to K(G, m) \). (We can see this by applying the operation to the universal case \(X = K(\pi, n) \).) But this is just an element of \(H^n(K(\pi, n); G) \). Thus, knowing cohomology operations is the same as knowing the cohomology of Eilenberg-Maclane spaces.

The Steenrod squares

We will focus our attention on the cohomology operations

\[
Sq^i : H^n(\cdot; \mathbb{Z}_2) \to H^{n+i}(\cdot; \mathbb{Z}_2)
\]

(for \(i \geq 0 \)) known as the Steenrod squares. These are group homomorphisms which can be applied to either absolute or relative cohomology. They have this name because of the second of their

Characterizing Properties:**

1. if \(i > n \) and \(x \in H^n \), then \(Sq^i x = 0 \);
2. if \(x \in H^n \), then \(Sq^n x = x^2 \in H^{2n} \);
3. \(Sq^0 \) is the identity;
4. \(Sq^1 \) is the Bockstein connecting homomorphism associated to the sexseq of coefficients \(0 \to \mathbb{Z}_2 \to \mathbb{Z}_4 \to \mathbb{Z}_2 \to 0 \) (to be discussed more next time);
5. \(\delta^* Sq^i = Sq^i \delta^* \), where \(\delta^* : H^n(A) \to H^{n+1}(X, A) \) is the connecting homomorphism of the cohomology lexseq of the pair \((X, A) \);
6. the Cartan formula:

\[
Sq^i(xy) = \sum_{j=0}^{i} (Sq^j x)(Sq^{i-j} y);
\]
7. the Adem relations: if \(a < 2b \), then

\[
Sq^a \circ Sq^b = \sum_{c} \binom{a-b-c}{a-2c} Sq^{a+b-c} \circ Sq^c.
\]
Remember that we’re working mod 2, so the coefficients in the Adem relations are all either 0 or 1. The Adem relations are very important, because they give relationships between the squares that must hold in any \mathbb{Z}_2-cohomology ring. For example, $Sq^1Sq^1 = 0$, $Sq^1Sq^2 = Sq^3$, etc. There is an Adem relations calculator at http://math.berkeley.edu/~aaron/adem.

The Steenrod algebra, denoted A, is the \mathbb{Z}_2-algebra on the Steenrod squares; addition is given by addition of functions and multiplication is given by composition.

We often collect all the squares into a single map $Sq : H^*(X; \mathbb{Z}_2) \to H^*(X; \mathbb{Z}_2)$ given by

$$Sq = \sum_{i=0}^{\infty} Sq^i.$$

This has the advantage of being a ring homomorphism. Note that when evaluated on any actual element of cohomology, the sum is finite (by property 1). As an example of the power of Sq, we easily prove

Proposition. For any $x \in H^1$, $Sq^i(x^j) = \binom{j}{i} x^{i+j}$.

Proof. Since $Sq(x) = Sq^0 x + Sq^1 x = x + x^2$, then

$$Sq(x^i) = (Sq(x))^j = (x + x^2)^j = \sum_{i} \binom{j}{i} x^{i+j}. \quad \square$$

For a sequence of positive integers $I = \{i_1, \ldots, i_r\}$, we abbreviate $Sq^I = Sq^{i_1} \cdots \cdot Sq^{i_r}$. (If $I = \emptyset$, then by convention $Sq^\emptyset = Sq^0 = id$.) We say that I is admissible if $i_j \geq 2i_{j+1}$ for all j. The length of I is $l(I) = r$, the degree of I is $d(I) = \sum i_j$, and the excess of I is $e(I) = (i_1 - 2i_2) + (i_2 - 2i_3) + \ldots + (i_r)$.

Theorem. $\{Sq^I : I \text{ admissible}\}$ forms a \mathbb{Z}_2-vector space basis for A.

Proof. This follows directly from the Adem relations. \square

Application: the Hopf invariant

Let $[f] \in \pi_{2n-1}(S^n)$, i.e. $f : S^{2n-1} \to S^n$. We obtain a complex called the mapping cone given by

$$K = C(f) = S^n \cup_f e^{2n}.$$

(That is, we attach the cell e^{2n} to S^n along its boundary $\partial e^{2n} = S^{2n-1}$.) Assuming $n \geq 2$, then by cellular cohomology,

$$H^i(K; \mathbb{Z}) = \begin{cases} \mathbb{Z} & i = n, 2n \\ 0 & \text{otherwise.} \end{cases}$$

If we choose generators σ of $H^n(K; \mathbb{Z})$ and τ of $H^{2n}(K; \mathbb{Z})$, then the ring structure on $H^*(K; \mathbb{Z})$ given by cup product gives us $\sigma^2 = H(f) \cdot \tau$. Here, $H(f) \in \mathbb{Z}$ is called the Hopf invariant of f. (It is only well-defined up to sign until we fix generators.)

Proposition. $H : \pi_{2n-1}(S^n) \to \mathbb{Z}$ is a group homomorphism.

The addition structure on $\pi_{2n-1}(S^n)$ is defined as follows. Write Δ' for the “pinching” map $S^{2n-1} \to S^{2n-1} \cup S^{2n-1}$ which collapses the equator to a point. Then for any $[f], [g] \in \pi_{2n-1}(S^n)$, we represent $[f] + [g]$ by the composite map

$$S^{2n-1} \xrightarrow{\Delta'} S^{2n-1} \cup S^{2n-1} \xrightarrow{f \vee g} S^n.$$

Proposition. If n is odd, then $H = 0$.

Proof. By the skew-commutativity of the cup product, if n is odd then $\sigma^2 = -\sigma^2$ so $\sigma^2 = 0$. \square

Proposition. If n is even, then there is an element $[f] \in \pi_{2n-1}(S^n)$ with $H(f) = 2$.

3
For experts: we can take $f = [t_n, t_n]$, where $t_n \in \pi_n(S^n)$ is the class of the identity map and the bracket is the Whitehead bracket $\pi_j \times \pi_k \to \pi_{j+k-1}$.

Corollary. If n is even, then $\pi_{2n-1}(S^n)$ contains \(\mathbb{Z} \) as a direct summand.

As it turns out, this along with the fact that $\pi_n(S^n) = \mathbb{Z}$ for all n describes all of the torsion-free part of any $\pi_k(S^n)$! (The proof uses a Serre spectral sequence over \(\mathbb{Q} \)).

We call Sq^i **decomposable** if we can write it as a polynomial in A of strictly lower degree; otherwise it is **indecomposable**.

Lemma. Sq^i is indecomposable iff $i = 2^k$.

Proof. First, suppose that $i = 2^k$. Write $H^*(\mathbb{R}P^\infty; \mathbb{Z}_2) = \mathbb{Z}_2[\alpha]$, with $|\alpha| = 1$. Then $Sq(\alpha) = Sq^0\alpha + Sq^1\alpha = \alpha + \alpha^2$, so $Sq(a^i) = (Sq(\alpha))^i = (\alpha + \alpha^2)^i = \alpha^i + \alpha^{2i}$ (since i is a power of 2, and we are working mod 2). So $Sq^i\alpha = 0$ for $0 < i < k$, and $Sq^i(\alpha') = \alpha^{2i} \neq 0$. Therefore Sq^i could not possibly be decomposed as a composition of lower-degree squares (or as sums of such compositions). Hence Sq^i is indecomposable.

On the other hand, suppose that $i = a + 2^k$ for $0 < a < 2^k$. Then certainly $a < 2 \cdot 2^k$, so by the Adem relations,

$$Sq^aSq^{2^k} = \binom{2^k - 1}{a} Sq^{a+2^k} + \text{(other terms)}.$$

Using basic number theory, it is easy to see that

$$\binom{2^k - 1}{a} \equiv 1 \pmod{2},$$

and hence

$$Sq^aSq^{2^k} = Sq^i + \text{(other terms)}.$$

So Sq^i is decomposable. \(\square \)

Note that we proved a natural statement (i.e., one that holds in all cohomology rings) by looking at the action of A on a specific cohomology ring.

Corollary. \(\{Sq^{2^k}\} \) generates A (nonfreely) as an algebra.

Theorem. If $[f] \in \pi_{2n-1}(S^n)$ has $H(f) = 1$, then $n = 2^k$.

Proof. In $H^*(K; \mathbb{Z})$, $\sigma^2 = \tau$, so this is true in $H^*(K; \mathbb{Z}_2)$ as well. But also $\sigma^2 = Sq^n\sigma$, and since $\tilde{H}^*(K; \mathbb{Z}_2)$ is also supported in degrees n and $2n$, if Sq^n were decomposable then $Sq^n\sigma$ would have to be zero. So it must be that $n = 2^k$. \(\square \)

Application of application: vector fields on spheres

An H-space structure on a based space (X, x_0) is a continuous (based) multiplication map $\mu : X \times X \to X$ with the property that x_0 is a 2-sided identity.

Proposition. If $\mu : S^{n-1} \times S^{n-1} \to S^{n-1}$ is an H-space structure, then there exists $[f] \in \pi_{2n-1}(S^n)$ with $H(f) = 1$.

Proof. For any map $g : S^{n-1} \times S^{n-1}$, we define the bidegree (α, β) of g to be the pair of degrees of the restriction of g to $S^{n-1} \times S_0$ and $S_0 \times S^{n-1}$. We carry out the Hopf construction on g to obtain a map $h(g) : S^{2n-1} \to S^n$ as follows. We consider

$$S^{2n-1} = S^{n-1} \ast S^{n-1} = S^{n-1} \times I \times S^{n-1}/S^{n-1} \times \{0\} \times S_0, S_0 \times \{1\} \times S^{n-1};$$

this is the join of S^{n-1} with S^{n-1}. We also consider

$$S^n = SS^{n-1} = S^{n-1} \times I/S^{n-1} \times \{0,1\} \cup S_0 \times I;$$

this is the (reduced) suspension of S^{n-1}. Then, we put

$$h(g)(a, t, b) = (g(a, b), t).$$

It is routine to verify that $H(h(g)) = \alpha \beta$. If μ is an H-space structure on S^{n-1}, then the existence of a 2-sided identity implies that its bidegree is $(1, 1)$. \(\square \)
In general, if we have a k-plane field on S^{n-1}, we may assume that our vector fields are orthonormal by the Gram-Schmidt process. Since all tangent vectors to a point $x \in S^{n-1}$ are perpendicular to x, we may therefore consider a k-plane field on S^{n-1} as being equivalent to a section of the fiber bundle over S^{n-1} whose total space is the Stiefel manifold
\[
V_{n,k+1} = \{ n \times (k+1) \text{ matrices with orthonormal columns} \}.
\]
Here, $V_{n,k+1} \rightarrow S^{n-1}$ is the projection onto the first column.

Now, suppose that S^{n-1} is parallelizable. This means that we have an $(n-1)$-plane field on S^{n-1}, which is equivalent to a section v of $V_{n,n} = O(n) \rightarrow S^{n-1}$. This gives us a map
\[
S^{n-1} \times S^{n-1} \xrightarrow{(v,\text{id})} O(n) \times S^{n-1} \xrightarrow{\alpha} S^{n-1},
\]
where $\alpha : O(n) \times S^{n-1} \rightarrow S^{n-1}$ is the obvious action of $O(n)$ on S^{n-1}. Write $e_1 \in S^{n-1} \subseteq \mathbb{R}^n$. Then $(x,e_1) \mapsto (v(x), e_1) \mapsto x$, so e_1 is a right identity. It is not hard to “straighten” this map so that e_1 is also a left identity. Then this new map is an H-space structure on S^{n-1}. As we have seen, this implies that $n = 2^k$!

To reiterate:

\[
\begin{align*}
S^{n-1} \text{ is parallelizable} & \Rightarrow S^{n-1} \text{ is an H-space} \\
& \Rightarrow \exists [f] \in \pi_{2n-1}(S^n) \text{ with } H(f) = 1 \\
& \Rightarrow n = 2^k
\end{align*}
\]

As it turns out, S^{n-1} is parallelizable if and only if \mathbb{R}^n can be made into a division algebra. In low dimensions, we have the division ring structures $\mathbb{R}^1 \cong \mathbb{R}$, $\mathbb{R}^2 \cong \mathbb{C}$, $\mathbb{R}^4 \cong \mathbb{H}$, $\mathbb{R}^8 \cong \mathbb{O}$. (Here \mathbb{H} denotes the quaternions and \mathbb{O} denotes the octonions.)

Theorem (Adams). *These are the only possibilities.*

Proof. K-theory.

\[
\square
\]