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1 Introduction – Part I (Ehud “Udi” Meir)

In order to explain what a fusion category is, we will begin with an example.

Example 1. Suppose G is a finite group and k = k is a field with char k = 0. Consider the category C = Rep(G),
the finite-dimensional k-vector spaces with a G-action. What do we know about this category?

1. By Maschke’s theorem, we know that C is semisimple: that is, every object is a sum of simple (indecomposable)
objects.

2. It is k-linear: HomC(X,Y ) is a k-vector space, and it has kernels and cokernels.

3. C is a monoidal category: if V,W ∈ C, then we have V ⊗W ∈ C (by the diagonal action: g(v⊗w) = gv⊗gw)).
This determines a functor C×C → C, which will satisfy certain axioms which we’ll explore later. In particular,
this monoidal structure admits a unit object 1.
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4. If V ∈ C, then we have a natural structure of a G-representation on V ∗ = Homk(V, k): given f ∈ V ∗, the
action is given by (gf)(v) = f(g−1v) (the inverse is just to make it a left action rather than a right action).

This is a primal example of what is known as a fusion category.

Definition 1. A fusion category is a category C such that:

1. C is k-linear (i.e. abelian with hom-sets actually k-vector spaces) and semisimple;

2. C has only a finite number of simple objects;

3. C is a monoidal category, i.e. we have some ⊗ : C×C → C with a unit object 1 ∈ C and functorial isomorpsisms
V ⊗ 1 ∼= V , along with natural isomorphisms αU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W ). However, this may not
satisfy higher coherence conditions, e.g. the pentagon axiom (which I’m not going to draw here).

4. C is rigid, i.e. for any V ∈ C there exist V ∗ and ∗V along with maps V ∗⊗ V → 1, 1→ V ⊗ V ∗, V ⊗ ∗V → 1,
and 1→ ∗V ⊗ V such that the composite

V
∼→ 1⊗ V coevV→ (V ⊗ V ∗)⊗ V → V ⊗ (V ∗ ⊗ V )

evV→ V ⊗ 1
∼→ V

is equal to the identity. (This is the categorical way of expressing that objects are dual to each other.)

When we say that C is semisimple with a finite number of simple objects, we mean that there are only finitely
many simple objects S1, . . . , Sn (i.e. those with no nontrivial monomorphisms into them), and that any object
V ∈ C can be written uniquely as

V ∼=
m⊕
i=1

S⊕mi
i .

It follows that for any simple object S, Hom(S, S) ∼= k. Another way of saying that C is semisimple is that any
monomorphism U ↪→ X splits, so that X ∼= U ⊕ V for some V .

Example 2. We now study G-graded vector spaces, which is in a sense dual to the previous example. Specifically, let
G be a finite group. We define C = VecG to have objects G-graded finite-dimensional vector spaces V =

⊕
g∈G Vg,

with Hom(
⊕
Vg,
⊕
Wg) those linear homomorphisms f satisfying f(Vg) ⊆ Wg. The tensor product is given by

(V ⊗W )g =
⊕

ab=g Va⊗Wb. The simple objects are all of the form kg for some g ∈ G. The duals of V =
⊕

g∈G Vg
are given by (V ∗)g = (Vg−1)∗ and ∗V = V ∗.

A key facet of this example is that when G is not abelian, the tensor product is not commutative. This brings us
to the discussion of left- and right-duals. First, however, we must discuss what functors between fusion categories
look like.

Definition 2. A tensor functor F : C → D of fusion categories is a k-linear functor (i.e. the maps on hom-spaces
are k-linear) together with natural isomorphisms f(X ⊗ Y )

∼→ f(X) ⊗ f(Y ), such that for any X,Y, Z ∈ C, the
diagram

F ((X ⊗ Y )⊗ Z) - F (X ⊗ Y )⊗ F (Z)

F (X ⊗ (Y ⊗ Z))
?

(F (X)⊗ F (Y ))⊗ F (Z)
?

F (X)⊗ F (Y ⊗ Z)
?

- F (X)⊗ (F (Y )⊗ F (Z))
?

commutes.

Let us look at some specific examples.
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Example 3. Let G,H be two finite groups and ϕ : G → H be a homomorphism. Then by restriction of scalars,
we get a functor F : Rep(H) → Rep(G). For instance, if we take G = {1} then this becomes Rep(H) → Vec. This
is a tensor functor, because the underlying vector space of the tensor product of H-reps is just the tensor product
of the underlying vector spaces.

Example 4. Again let G,H be two finite groups and ϕ : G→ H be a homomorphism. Then we get a functor F :
VecG → VecH , given by F (kg) = kϕ(g). Now, however, we must specify the isomorphism F (ka⊗kb)→ F (ka)⊗F (kb).
This runs as follows. First of all, ka⊗kb = kab, so we must have α(a, b) : F (kab) = kϕ(ab) → kϕ(a)⊗kϕ(b) = kϕ(a)ϕ(b).
This defines a function α : G×G→ k×. We would like it to satisfy

F ((ka ⊗ kb)⊗ kc)
α(ab, c) - F (ka ⊗ kb)⊗ F (kc)

F (ka ⊗ (kb ⊗ kc))
?

(F (ka)⊗ F (kb))⊗ F (kc)

α(a, b)

?

F (ka)⊗ F (kb ⊗ kc)

α(a, bc)

? α(b, c)- F (ka)⊗ (F (kb)⊗ F (kc)).
?

That is, we should have α(b, c)α(a, bc) = α(a, b)α(ab, c); that is, α should be a 2-cocycle. In fact, these functors are
precisely parametrized by H2(G, k×).

This is actually a special case of Ocneanu rigidity : the cohomology group H2(G, k×) is a finite abelian group,
and so in particular there are only a finite number of ways to equip such a functor with a tensor structure. This is
not at all obvious from the original definition!

Definition 3. Let C be a fusion category with simple objects S1, . . . , Sn. The Grothendieck ring of C is K0(C) =⊕
i Z ·Si; if Si⊗Sj =

⊕
kN

k
ijSk, then the product in K0(C) is determined by Si ·Sj =

∑
Nk
ijSk. (This agrees with

the usual definition involving short exact sequences.)

Let us consider some examples.

Example 5. Let C = VecG. Since the simple objects are kg for g ∈ G, then K0(C) ∼= ZG, the usual group algebra.
(It’s important to note that in any case, K0(C) always comes with a distinguished basis with nonnegative structure
constants).

Example 6. Let C = Rep(G). Then K0(G) is the character ring of G, i.e.
⊕

ψ Z · ψ, where ψ are the characters
(i.e. one-dimensional representations) of G.

We can ask: For a given ring R with a chosen basis with positive structure constants, can we categorify to find
a fusion category C with K0(C) = R (with the same basis)? If so, in how many ways?

Example 7. Suppose we’re looking at ZG with the usual basis. We know that C will have to have basis kg, with
kg ⊗ kh = kgh. But we must check further structure. For instance, we have

(kg ⊗ kh)⊗ kl
∼ - kg ⊗ (kh ⊗ kl)

kgh ⊗ kl

wwwwwwwww
kg ⊗ khl

wwwwwwwww

kghl

wwwwwwwww
w(g, h, l) - kghl

wwwwwwwww
for some w : G×G×G→ k×. It turns out that the pentagon diagram commutes iff w is a 3-cocycle. It turns out
that such categories are actually parametrized by H3(G, k×), which is also a finite group.
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2 Introduction – Part II (Orit Davidovich)

2.1 Recap

We recall the definition of a fusion category. Let k be a field with char k = 0 and k = k.

Definition 4. A fusion category is a k-linear, semi-simple, rigid, monoidal category such that:

• There are finitely many simple objects.

• The hom spaces are finite dimensional.

• End(1) = k.

Recall that k-linearity means that our category is enriched over Veck, with the usual categorical operations ⊕,
ker, coker, etc. Recall that semi-simple means that every object is a direct sum of finitely many simple objects (i.e.
indecomposable objects, i.e. those admitting no nontrivial monomorphisms). Recall that rigid means that objects
have left and right duals. Recall that monoidal means that we have a tensor product.

If we consider a fusion category C as a k-linear category, then it is automatically isomorphic to
∏
i∈I Veck, where

I is the set of isomorphism classes of simple objects of C. However, the interesting structure comes on top. The
monoidal structure gives us a multiplication on the abelian group ZI , and the rigidity gives us involutions on the
ring.

Example 8. Let G be a finite group, and let C = Rep G (finite-dimensional). We saw that this has the structure
of a fusion category. The tensor product uses the diagonal action, and dualizing takes V to V ∨ and acts via the
inverse (to preserve the fact that we’re looking at left actions).

Example 9. Let G be a finite group, and let C = VecG be the category of G-graded finite-dimensional k-vector
spaces. We also saw that this has the structure of a fusion category. The tensor product is obtained by convolution:
(V⊗W )g =

⊕
h∈G Vgh−1 ⊗Wh. Duals are defined by (V ∨)g = (Vg−1)∨.

At the end of the last lecture, we discussed a generalization of this latter example.

Example 10. We generalized by introducing a 3-cocycle ω ∈ H3(G; k×) to gives us VecωG (where ω 6= 1). This gives
us a choice of associators αg,h,i : (Vg⊗V ′h)⊗V ′′i → Vg⊗(V ′h⊗V ′′i ) given by αg,h,i(v⊗v′⊗v′′) = ω(g, h, i) ·v⊗v′⊗v′′.
The fact that dω = 0 is equivalent to the statement that the pentagon diagram commutes.

Definition 5. The Grothendieck ring is an invariant of a fusion category. As a group, it is the free abelian
group generated on isomorphism classes of simple objects; multiplication is given by [xi][xj ] =

∑
a∈I V

a
ij [xa], where

V aij = dim(Hom(Xa, Xi ⊗Xj).

Let’s explore what the Grothendieck rings of the examples we’ve just seen are. First of all, GR(C)⊗Z k is known
as the Verlinde algebra. When C = RepG, then GR(C) ⊗Z k is the algebra of class functions. When C = VecG or
C = VecωG, then GR(C) =∼= ZG. This is a very rough invariant; it doesn’t detect associativity.

Proposition 1. Given a group G and a field k, there is a bijection

{fusion cat. C with GR(C) ∼= ZG}/iso.
∼↔ H3(G; k).

2.2 Commutativity

If a fusion category is supposed to be a categorification of the idea of a monoid, then the first thing we might ask
for is a categorification of the notion of commutativity. We might first demand isomorphisms V ⊗W ∼= W ⊗ V ,
but we’ll quickly realize that we actually need these to be functorial. We can rephrase this as asking for a natural
isomorphism β : ⊗ → ⊗op (from the “tensor product” functor to the “tensor product in the opposite order” functor).
Then, for any σ ∈ Sn we have functorial isomorphisms

((V1 ⊗ V2)⊗ . . .)⊗ Vn ∼= ((Vσ(1) ⊗ Vσ(2))⊗ . . .)⊗ Vσ(n).

Moreover, we want a canonical choice of this isomorphism. Thus, we are looking for coherence, or even perhaps
braided coherence.

We have the following definition, which also may be viewed in some sense as a theorem.
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Definition 6. Let C be a monoidal category with a natural isomorphism β : ⊗ → ⊗op. We say that β is coherent
(or satisfies coherence) if the following two diagrams commute. The first is

(V ⊗ V ′)⊗ V ′′
β- V ′′ ⊗ (V ⊗ V ′)

α−1- (V ′′ ⊗ V )⊗ V ′

V ⊗ (V ′ ⊗ V ′′)

α

?

β
- V ⊗ (V ′′ ⊗ V ′)

α−1
- (V ⊗ V ′′)⊗ V ′,

β ⊗ 1

6

and the second is obtained by replacing the upper and lower left horizontal arrows by β−1 and the right vertical
arrow with β−1 ⊗ 1. (These are sometimes called the hexagon diagrams.) Then, C equipped with such a β is called
a braided monoidal category, and β is called its braiding.

It is convenient to rephrase this as follows. We define the braid category B to have objects N = {0, 1, 2, . . .},
with:

1. HomB(n, n) = {braids on n strands}/isotopy, where composition is given by stacking braids (from bottom to
top). (This is a group, called the nth braid group.)

2. HomB(n,m) = ∅ if n 6= m.

This category has a monoidal structure: m⊗n = (m+n), and tensor product of morphisms is given by just putting
the braids next to each other. It’s easy to see that this is actually a strict monoidal structure. As suggested by
the name, B also has a braiding: β : m⊗ n→ n⊗m is given by the morphism in HomB((m+ n), (m+ n)) which
interchanges the obvious blocks of m and n dots, putting the strands from the first m dots to the last m dots on
top of the strands from the last n dots to the first n dots.

Proposition 2. B is a braided monoidal category.

This is just a routine verification of the commutativity of the hexagon diagrams.

Theorem 1 (Joyal-Street). Let C be a braided monoidal category. Then there is an equivalence of categories
Fun⊗,br(B, C) ' C, given by F 7→ F (1).

Thus, B is the braided monoidal category freely generated on a single object. This suggests the extremely
fruitful idea of working diagramatically, with diagrams expressed as functors instead of actually being written out.

2.3 Graphical calculus

Suppose we are given a rigid braided monoidal category C. The first thing we want to do is give pictorial rep-
resentation to morphisms in C. So, we will draw f : x → y as a vertical arrow through a box containing the
letter f . Then, f ⊗ f ′ is drawn by putting these vertical arrows next to each other. More generally, if we have
f : x1 ⊗ . . .⊗ xn → y1 ⊗ . . .⊗ ym, we write f as a wide box with n inputs at the bottom and m outputs at the top.

We may consider an upward V vee arrow as a downward V arrow. This manifests itself as follows. The evaluation
is a functorial collection of maps e : V vee ⊗ V → 1. Pictorially, we might represent this as a wide box with V ∨

and V coming in and 1 coming out; however, we will often write this as a curved arrow running counterclockwise,
starting up and ending down. Dually, we might write the coevaluation c : 1→ V ⊗ V ∨, instead of as a box with 1
coming in and V and V ∨ going out, as a curved arrow running clockwise, starting down and ending up.

Next, the braiding gives β : x⊗ y → y ⊗ x; instead of writing this as a box with x and y going in and y and x
coming out, we simply drawn an X with the x-arrow going over the y-arrow. (Then, β−1 is given by putting the
y-arrow over the x-arrow.)

Now, the rigidity axioms simplify dramatically. The axiom that

V ∼= 1⊗ V c⊗1→ V ⊗ V ∨ ⊗ V 1⊗e→ V ⊗ 1 ∼= V

is equal to idV is now simply interpreted as straightening out a squiggling arrow (of the shape y = −(x3−x), going
upwards) into an upwards vertical arrow.
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This is great, but we have the problem of consistency. (See picture.) Suppose we have V coming out at the top.
then the bottom hook is a coevaluation, so V ∨ comes in, but then the evaluation is on V ∨, so it has input V ∨∨,
so ultimately we see that this has V ∨∨ as an input. One way of fixing this is to choose isomorphisms V ∼= V ∨∨,
i.e. a monoidal natural isomorphism δ : 1 → (−)∨∨. This is called a pivotal structure. So, we can precompose our
picture with the box δ going from V to V ∨∨. Now, we’re working up to isotopy, and this looks like it’s isotopic
to a vertical line. However, there’s no reason this should be equal to the identity. So instead we fatten our lines
to ribbons, and we call this a twist. This twist of V is denoted θV . (See picture.) In general, θV 6= idV . A rigid
braided monoidal pivotal category is called a ribbon category.

Thus, we have strengthened our graphical calculus into the calculus of directed ribbon graphs.

Theorem 2 (Reshetikhin-Turaev). Let C be a ribbon category, and write RC for the category of directed ribbon
graphs labelled by objects of C. Then there is a unique monoidal functor RC → C.

2.4 Modularity

By definition, we call a category premodular if it is a ribbon fusion category. Now, for any object X, we can braid
twice against any other object V , and we can ask: To what extent is this equal to the identity? (See picture.) This
has important quantum physical interpretations. We say X is transparent if for all V , βX,V ◦ βV,X = 1V⊗X . To
what extent is X transparent? (Can we tell if we’ve sent our favorite particle around another?) On the one extreme
we have symmetry, which is by definition the case that every simple X is transparent (so β2

X = 1 for all X). On the
other extreme we have modularity, which is by definition the situation where only the unit object is transparent.

3 Dimensions in fusion categories (Orit)

3.1 Dimensions

Let C = Veck. Then we have a notion of trace: given f : V → V , we can define trf via

k → V ⊗ V ∗ f⊗1→ V ⊗ V ∗ → k

given by

1 7→
∑

ei ⊗ ei 7→
∑

f(ei)⊗ ei 7→
∑

ei(f(ei)).

We would like to generalize this to fusion categories. So, we take the trace of f : V → V ∗∗ by looking at the
map

1
coev→ V ⊗ V ∗ f⊗1→ V ⊗ V ∗∗ ⊗ V ∗ ev→ 1,

which runs in exactly the same way.

Remark 1. The functor ( )∗∗ is monoidal, and hence tr(f ⊗ g) = tr(f) · tr(g) for f : V → V ∗∗ and g : W →W ∗∗.

Now, V ∼= V ∗∗, but not necessarily canonically or monoidally in C. Thus we make the following definition.

Definition 7. For V ∈ C simple, fix any isomorphism fV : V → V ∗∗. We then defined the squared norm of V to
be |V |2 = tr(fV ) · tr((f∗V )−1) (where f∗V : V ∗∗∗ → V ∗, so (f∗V )−1 : V ∗ → (V ∗)∗∗). This is only defined for simple
objects!

Remark 2. Of course, |V |2 does not depend on our choice of fV . In general, given f , using our graphical calculus
we can write f∗ as [PICTURE].

Moreover, |1|2 = 1, and |V ⊗W |2 = |V |2 · |W |2.

Definition 8. We define the global dimension of a fusion category C to be the sum of the squared norm |V |2 for
all simple V ∈ C.

Example 11. Let G be a finite group, and let C = Rep(G). Then |V |2 = (dimV )2. Hence, dim C = |G|.

Example 12. When C = VecG, then |V |2 = 1 so dim C = |G|.
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This equality of dimensions is not a coincidence! It comes from the fact that these two examples are Morita
equivalent, which we will discuss later.

Example 13. Let C be the Fibonacci category. Its simple objects are 1 and X (with X ≡ X∗ ≡ ∗X), with
X ⊗X = 1⊕X. Then |X|2 = ((1 +

√
5)/2)2, and hence dim C = 12 + ((1 +

√
5)/2)2.

Example 14. Let H be a finite-dimensional semi-simple Hopf algebra over k. (The precise definition isn’t impor-
tant; what we need to know is that this is the object whose representation theory gives you a fusion category.) (The
first example is the special case where H = kG.) This comes with an antipode δ : H → H, which is invertible; we
know that δ2(x) = gxg−1 for some group-like element g ∈ H. This gives us a canonical identification V ∼= V ∗∗. (In
the first example, δ2 = id.) Then dim Rep(H) = tr(δ2) = dimH.

Recall that for a fusion category C, we said that C has a pivotal strucure if we have some monoidal equivalence
ε : 1C → ( )∗∗. (Recall that this was our fix for the issue of wanting strands to correspond to a single object, but
then the twist θV would go from V ∗∗ to V , so we precompose it with εV .)

Definition 9. Let C be a pivotal fusion category and let X ∈ C. The quantum dimension of X, qdim X ∈ End(1),
is given pictorially by [PICTURE] (which is often written without the ε), i.e. eV ◦ εV ⊗ 1 ◦ cV : 1→ 1. Equivalently,
qdim V = tr(εV ).

Proposition 3. Let C be a pivotal fusion category. Then:

1. |V |2 = (qdim V ) · (qdim V ∗).

2. If k = C, then qdim V ∗ = qdim V .

Proof. First statement first. By definition, |V |2 = tr(εV ) · tr((ε∗V )−1). Because ε is monoidal and we’re working in
the semi-simple setting, then (ε∗V )−1 = εV ∗ . The statement immediately follows.

Now the second statement. We again use the monoidality of the pivotality. Let Xi, Xj ∈ C be simple. Then
εXi
⊗ εXj

= εXi⊗Xj
: Xi ⊗Xj → X∗∗i ⊗X∗∗j . Let us decompose this to some⊕

k

Nk
ijXk →

⊕
k

Nk
ijX

∗
k .

Hence, εXi ⊗ εXj =
∑
kN

k
ijεk. Applying trace on both sides, we obtain (qdim Xi) · (qdim Xj) =

∑
kN

k
ij · qdim Xk.

Given our ordering on the simple objects, we can write the vector ~d = (. . . , qdim Xi, . . .). Then we have the ith

fusion matrix Ni given by (Ni)
k
j = dim Hom(Xk, Xi ⊗Xj). This yields that qdim Xi · ~d = Ni~d. (This, by the way,

implies that quantum dimension must be an algebraic number.)

Now, if we left-multiply by the Hermitian conjugate (~d)†, we get qdim Xi · ||~d||2 = (~d†)Ni ~d. Thus N t
i = Ni∗ (the

fusion matrix for X∗i ), then qdim Xi · ||~d||2 = (Ni∗ ~d)†~d = qdim X∗i · ||~d||2.

We introduce an auxiliary definition.

Definition 10. Let C be a pivotal fusion category. We say that C is spherical if qdim V = qdim V ∗ for all V ∈ C.

By the above proposition, if k = C then this implies that qdim V ∈ R ⊂ C for all V . Since we have a Galois
action, then in fact qdim V will have to be totally real (i.e., its orbit under the Galois action is contained in R).
(Given a fusion category over C, we can obtain an action of Gal(Q/Q), i.e. for any σ we obtain a new fusion category
Cσ by keeping our objects but twisting the hom-spaces by − ⊗C,σ C. If for X ∈ C we write the associated object
Xσ ∈ Cσ, then we have the formula qdim Xσ = σ(qdim X).)

Remark 3. Given any fusion category C, we can construct a pivotal cover F : C̃ → C (which is automatically
spherical). This functor preserves squared norms. So when k = C, then square-norms of simple objects are positive

in C̃, and hence this is true for C too, which implies that dim C ≥ 1 (with equality iff C ' VecC).
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3.2 Modularity

Recall that we defined a ribbon category to be a braided rigid monoidal category with pivotal structure, and a
premodular category to be a ribbon fusion category. Then we defined a modular category to be a premodular
category where only the object 1 is “transparent”.

We will rewrite this as follows. Assume that C is premodular. Let I be the set of isomorphism classes of simple
objects in C. We define a square matrix S̃ of dimension |I|: writing {xi}i∈I for the representations, we define

S̃ij = qtr(βxj ,xi ◦ βxi,xj ) i.e. [PICTURE].

Now we can say that a ribbon fusion category is modular if its S̃-matrix is invertible. This gave us an ordering
of ribbon fusion categories by rk(S̃), when this is 1 we call it “symmetric”.

Let us write T = diag(θi) be the diagonal matrix of θiidXi = θXi . Then we have the following result.

Proposition 4. Under a certain rescaling of S̃ and T giving matrices s and t, we have the relations (st)3 = s2 and
s4 = 1. Note that these are the defining relations for

ŝ =

(
0 −1
1 0

)
, t̂ =

(
1 1
0 1

)
in SL2(Z).

Thus, a modular category gives rise to a modular representation. (The S in S̃ just comes from the S of SL2(Z).)

3.3 Drinfeld centers

(These are a/k/a “Drinfeld doubles” or “quantum doubles”.)

Suppose C be a rigid monoidal category. The Drinfeld center of C is a category Z(C) whose objects are pairs

(X,φ) where X ∈ C is an object and φ : X⊗−
∼=→ −⊗X is a natural isomorphism which satisfies the braid relations

that (1⊗ φZ) ◦ (φY ⊗ 1) : X ⊗ Y ⊗ Z → Y ⊗ Z ⊗X is equal to ϕY⊗Z : X ⊗ (Y ⊗ Z)→ (Y ⊗ Z)⊗X.) In Z(C), a
morphism from (X,φ) to (X ′, φ′) is given by a morphism f : X → X ′ such that φ′Y ◦ (f ⊗ 1Y ) : X ⊗ Y → X ′ ⊗ Y
equals (1Y ⊗ f) ◦ ϕY : X ⊗ Y → Y ⊗X ′. Pictorially, [PICTURES].

Proposition 5. Z(C) is rigid, monoidal, and braided (namely β(X,φ),(X′,φ′) = φX′).

Example 15. Let C = VecG. We claim that Z(C) is the category of G-equivariant sheaves on G, i.e. G//G-
representations (where G//G is defined by the conjugation action of G on G; this is a groupoid, or really a quiver).
Now, we only need to know what happens with φ : V ⊗− → −⊗ V on simple objects, i.e. φx : V ⊗ kx → kx ⊗ V .
Hence (φx)gx : Vg → Vx−1gx. The braiding relation is precisely what guarantees that [PICTURE] is a representation.

It turns out that as braided monoidal categories, Z(Rep(G)) ' VecG. This can (very nearly) be taken as a
definition of Morita equivalence; the equality of global dimensions falls out as a consequence.

4 Frobenius-Perron dimension and module categories (Udi)

4.1 Frobenius-Perron dimension

As motivation, let V be a finite-dimensional representation of the finite group G. Then, V ⊗ kG ' Vtr ⊗ kG, where
Vtr has the same underlying vector space as V but with trivial G-action. Explicitly, we can take v⊗ 1 7→ v⊗ 1 and
v ⊗ g 7→ g−1v ⊗ g. This actually gives us an isomorphism of representations. We want to see how this looks inside
K0(Rep(G)). There, [V ][kG] = dim(V ) · [kG]. Thus, dimV is an eigenvalue of multiplication by [V ], and [kG] is
a common eigenvector for all [V ]. In general, we won’t always explicitly have this setup, but we can build off the
following structure theorem.

Theorem 3 (Frobenius-Perron). Suppose A is an n× n matrix with nonnegative entries. Then:

1. There is some λ > 0 such that λ is an eigenvalue of A.

2. Of all the largest-in-absolute-value eigenvalues of A, at least one is positive.
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Thus, we make the following definition.

Definition 11. Let V ∈ C, and denote by AV the matrix of left multiplication by [V ] on K0(C). We call the largest
positive eigenvalue of AV the Frobenius-Perron dimension of V . We denote this by FPdim V . Note that this need
not be an integer (though it is always algebraic).

Proposition 6. Consider the element

R =
∑

V simple

FPdim V · [V ] ∈ K0(C)⊗ C

Then R is a common eigenvector: for all V ∈ C, we have [V ] ·R = FPdim V ·R.

We can think of this element R as our generalization of [kG] ∈ K0(Rep(G))

Corollary 1. FPdim is multiplicative, i.e. FPdim(V ⊗W ) = FPdim V · FPdim W .

Of course, FPdim(V ⊕W ) = FPdimV +FPdimW , so in fact we have a ring homomorphism FPdim : K0(C)→ R.

Proposition 7. FPdim is the unique homomorphism which sends all simple objects to positive numbers.

Definition 12. We define FPdim C =
∑
V simple(FPdim V )2, and we say that C is integral if FPdim C ∈ Z.

Example 16. Let p be a prime number. Consider the category VecCp , where Cp is a cyclic group of order p. Any
simple object is of the form kg for g ∈ Cp, so FPdim(VecCp) = p. More generally, FPdim(VecωG) = |G| (where
ω ∈ H3(G, k×) is any twist of the associator).

Theorem 4 (E-N-O). Any fusion category C with FPdim C = p (for p prime) is of the form VecωCp
.

In fact, there is a more general classification for FPdim C = pn – they are all “group-theoretic” – but that is
beyond the scope of this talk.

Note that all of this only depends on the Grothendieck ring of the category.

4.2 Module categories and Morita equivalence

As fusion categories are a categorification of the notion of rings, we have the notion of module categories, on which
fusion categories act.

Definition 13. Let C be a fusion category. We say that a category M is a module category over C if the following
conditions hold:

1. M is k-linear.

2. M is semisimple with a finite number of isomorphism classes of simple objects.

3. We have a functor C×M →M , denoted (X,M) 7→ X⊗M , along with natural isomorphisms β : (X⊗Y )⊗M
∼=→

(X ⊗ (Y ⊗M) such that the pentagon diagram commutes.

Example 17. The fusion category C can be taken as a C-module category.

Example 18. Suppose C = Rep(H) for H a Hopf algebra. Then M = Vec is a C-module category, with action
C ×M →M given by (V,W ) 7→ V ⊗W (forgetting that V is a representation).

Example 19. Suppose G is a finite group, and let C = Rep(G). (Since Rep(G) = Rep(kG), the previous example is
an example of a C-module.) Let A ≤ G be a subgroup, and let M = Rep(A). Then we have the module structure
C ×M →M given by (V,W ) 7→ V ⊗W .

Example 20. Let A be a finite group, and write kA = span{Ua}a∈A, where UaUb = Uab. More generally, for
α ∈ H2(A, k×) we have α : A × A → k×, and then we get kαA = span{Ua}a∈A given by UaUb = α(a, b)Uab. Now
if A ≤ G and C = Rep(G) and M = Rep(kαA), then we have an action C ×M → M by (V,W ) 7→ V ⊗W , where
a(v ⊗ w) = a · v ⊗ Ua · w.
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The most important thing about the previous example is that this actually gives all the indecomposable module
categories of Rep(G).

In a sense we will make precise, we have described all module categories. We explore this presently.

Definition 14. An object A ∈ C is called an algebra if it has an associative multiplication M : A ⊗ A → A with
unit u : 1 → A. Given an algebra A ∈ C, a right A-module is an object X ∈ C with a map X ⊗ A → X satisfying
the usual axioms.

Example 21. Let C = VecG, the category of G-graded vector spaces. Suppose A ≤ G and α ∈ H2(A, k×). We’ve
already discussed kαA, which is actually a G-graded algebra (in the usual sense):

(kαA)g =

{
0, g /∈ A
span Ug, g ∈ A.

Hence kαA ∈ VecG is an algebra.

From this, we can construct module categories. Let C be any fusion category, let A ∈ C be an algebra, and let X
be a right A-module. Then Y ⊗X is a right A-module by (Y ⊗X)⊗A ∼→ Y ⊗ (X ⊗A)→ Y ⊗X. However, recall
that the definition of module category includes a semisimplicity condition. So, we make the following definition.

Definition 15. If A ∈ C is an algebra, we say A is semisimple if the category ModCA is semisimple.

Proposition 8. If A ∈ C is a semisimple algebra, then ModCA is a C-module category, given by the above formula.

Theorem 5 (Ostrik). Given any fusion category C any any C-module category M , there exists a semisimple algebra
A ∈ C and an equivalence M ' ModCA.

Outline of proof. Let M be a C-module category, and let M,N ∈ M. We need to construct Hom(M,N), so that
for X ∈ C we have an exponential adjunction HomM(X ⊗M), N) ∼= HomC(X,Hom(M,N)). Equivalently, we need
an evaluation evM,N : Hom(M,N) ⊗M → N . To specify this as an object of C, we just need to say how many
times each simple in C shows up; in general this might not be defined, but fusion categories have so much structure
that by “abstract nonsense” these actually always do exist.

Now, given M ∈ M, consider Hom(M,M) ∈ C. We have a canonical evaluation map Hom(M,M) ⊗M → M .
To put an algebra structure on Hom(M,M), we need a map Hom(M,M) ⊗ Hom(M,M) → Hom(M,M). But
this is the same as a map Hom(M,M) ⊗ Hom(M,M) ⊗M → M , which is given by iterating the evaluation map.
The unit map 1 → Hom(M,M) is equivalent to the identity map 1 ⊗M → M . For any N ∈ M, we can put a
Hom(M,M)-module structure on Hom(M,N) by essentially the same trick of applying the evaluation map twice.
So, we get a functor M→ ModCHom(M,M). Of course, this need not be an equivalence. However, Ostrik proves
that this is an equivalence iff M is a generator of M, i.e. any N ∈ M is a direct summand of X ⊗M for some
X ∈ C. (These always exist, for instance we can take a direct sum of all the simple objects of M.)

5 On Morita equivalence for fusion categories (Udi)

Recall that if C is a fusion category, a module category M over C is a category M such that:

• M is k-linear;

• M is semisimple and has a finite number of simple objects;

• we have an action functor C ×M →M satisfying the usual axioms.

Example 22. If G is a finite group and C = VecG, then any subgroup H and 2-cocyclce ψ ∈ H2(H, k×) gives a
module category: we consider the algebra kψH inside of C, and set M = ModCk

ψH: given X ∈ M nad Y ∈ kψH,
we have a (right) action X⊗kψH → X and moreover this agrees with (X⊗Y )⊗kψH → Y ⊗ (X⊗kψH)→ Y ⊗X.

Recall the theorem that we saw last time.

Theorem 6 (Ostrik). If C is any fusion category and M is any module category over C, then there is an algebra
A ∈ C such that M ∼= ModCA.
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Today, we will define the notion of Morita equivalence. Recall that back in the decategorified world, we had the
following.

Definition 16. Let A and B be two algebras over a field k. We say that A and B are Morita equivalent if the
abelian categories RepA and RepB are equivalent.

Example 23. The simplest example is when A = k and B = Mn(k).

Proposition 9. A and B are Morita equivalent iff there is some P ∈ ModA (with some nice properties: it’s projective,
and it’s a generator if ModA, i.e. any object is a quotient of copies of P ) such that B ∼= EndA(P ) as rings. (This
is precisely the connecting A − B-bimodule for the usual definition.) In general, if A and B are Morita equivalent
then Z(A) ∼= Z(B).

So, how will we categorify this?

Definition 17. Let C be a fusion category and M be a module category over C. We define the dual of C with
respect to M to be

C∗M = FunC(M,M) = {F ∈ Fun(M,M) : for all X ∈ C,m ∈M we have γX,m : F (X ⊗m)
∼→ X ⊗ F (m)}.

(Of course, we automatically assume all our functors to be additive; we’re working in the category of abelian
categories.) This has a natural tensor structure, given by composition.

Example 24. Let G be a finite group, and let C = VecG be the category of G-graded vector spaces, and let
M = Vec. Note that M only has only one simple object. So given a C-linear functor F : M → M , we just look at
F (k) = V . Now, the simple objects of C are kg for g ∈ G. So, we just need to specify F (kg ⊗ k)→ kg ⊗F (k) – but
these are both just F (k). So ultimately, for all g ∈ G we obtain Tg : V → V such that Tg ◦ Th = Tgh. That is, the
C∗M = Rep(G). It’s not hard to check that the tensor structures agree, too. In fact, we see that C∗M is also a fusion
category if we assume that char k = 0 (because we need semisimplicity).

In general, if H is a Hopf algebra, M = Vec is a module category over C = Rep(H) (as a special case of the
above), then C∗M = Rep(H∗).

If char H = 0 and dimH < ∞, there is a deep theorem (by Larson and Radford) saying that H is semisimple
iff H∗ is semisimple. We have the following generalization to fusion categories.

Theorem 7 (Etingof, Nikshych, Ostrik). If C is a fusion category and M is an indecomposable module category
(i.e. it cannot be written as a direct sum of sub-module categories), then C∗M is also a fusion category.

Definition 18. In this situation, we call C and C∗M Morita equivalent fusion categories.

Let us unravel part of the definition for C∗M to be a fusion category.

• The unit object in C∗M = FunC(M,M) is the identity functor. (If M were decomposable, this would be
decomposable, which violates the definitions.)

• Duals come from (left and right) adjoint functors. (Since M is sufficiently nice, these automatically exist.)

• It’s not so easy to see that C∗M only has a finite number of simple objects; cf. the following theorem.

Supppose that M ∼= ModCA for some algebra A ∈ C. We have the functor F : (BimodCA)op → C∗M given by
X  FX , where FX(T ) = T ⊗A X. (The op is because FX⊗AY (T ) = T ⊗A (X ⊗A Y ) = FY ◦ FX(T ).) In the
classical case this is an equivalence.

Theorem 8 (Ostrik). This functor F is an equivalence of tensor categories.

So, for the last bullet point above, it suffices (and is much easier) to prove that BimodCA has a finite number of
simple objects. Indeed, if S ∈ BimodCA is simple, then there exists a simple object X ∈ C and a map A⊗X⊗A� S
of A-bimodules. That is, S needn’t be a simple object of C, but we can take X to be a simple constituent of S, and
A ⊗X ⊗ A has the obvious (free) A-bimodule structure; the map will certainly be nonzero, but since S is simple
then it must be epic. Now, there are only a finite number of simple objects of C, and it’s not hard to see that
moreover for each such X, A⊗X ⊗A only admits a finite number of simple quotients.

(Of course, the really hard part of the above E-N-O theorem is to show that C∗M is semisimple. If C is a
representation category of a Hopf algebra and M = Vec, then we can use what we have already seen; otherwise, there
is a generalization of the theorem of Larson and Radford, whichs says that any fusion category is the representation
category of a weak Hopf algebra, and this is what E-N-O use to finally prove the result.)
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Proposition 10. The relation C ∼ C∗M is in fact an equivalence relation.

Proof. For identity, if we consider C as a C-module category, we’ll get that C∗C ∼= C. For symmetry, if C is a fusion
category with indecomposable module category M , note that M is also a C∗M -module category (with the evaluation
action (F,m) 7→ F (m)). A “double-centralizer theorem” (due to E-N-O) tells us that (C∗M )∗M

∼= C. Transitivity is
similar.

Just as in the classical case, we have a 1-to-1 correspondence between module categories over C and module
categories over C∗M . Namely, if N is a module category over C, then we obtain the C∗M -module category FunC(M,N).
(This associates left modules with right modules and vice versa, but we won’t dwell on this minor issue.)

In the classical case if A and B are Morita equivalent rings then Z(A) ∼= Z(B); parallelly, if C and D are Morita
equivalent fusion categories, then Z(C) ' Z(D) as braided fusion categories. (Recall that we saw the notion of
center previously.) This is actually kind of surprising, because recall that now we have Z(C) � C (as opposed to
Z(A) ⊂ A). The converse holds, too: if Z(C) ' Z(D) as braided fusion categories, then C ∼ D.

We’d like to try and explain how and why the center enters the picture here. (It’s analogous to the same
argument for rings.) We begin with a definition.

Definition 19. If C and D are fusion categories, we define a new fusion category C � D, their (external) tensor
product, which has simple objects X � Y for X ∈ C and H ∈ D both simple.

Now, in particular, we can take D = Cop. Then, C � Cop has the module category M = C given by (X �
Y ) · Z = X ⊗ Z ⊗ Y . Now, a functor FunC�Cop(M,M) needs to commute with the action of C � Cop, i.e. it
needs to commute with both the left and right actions of C. For example, if F (1) = V ∈ C, then it must be that
F (X) = F (X⊗1) = X⊗F (1) = X⊗V . We also need F (1⊗X)→ F (1)⊗X, which is just X⊗V → V ⊗X. For this
reason, objects of FunC�Cop(M,M) will be precisely objects V ∈ C equipped with isomorphisms V ⊗X → X ⊗ V
for all X ∈ C; that is, they will be central objects. Thus, FunC�Cop(M,M) ∼= Z(C).

Lastly, let us just point out that given C and M , we can consider M as a module category over C � (C∗M )op, and
then we obtain

Z(C∗M ) ∼= (C � (C∗M )op)∗M
∼= Z(C).

6 Ocneanu rigidity (Orit)

6.1 Unitary fusion categories

Our proof of Ocneanu rigidity will be applicable to unitary fusion categories, so this is our starting point.

Definition 20. A unitary fusion category is a fusion category C defined over C, with all structure isomorphisms for
simple objects being unitary (in a sense we’ll see in a second), equipped with a conjugation Hom(x, y)→ Hom(y, x),
denoted f 7→ f , for all x, y ∈ C, which is:

1. anti-linear : (λ · f) = λ · f ;

2. contravariant : g ◦ f = f ◦ g;

3. monoidal f ⊗ g = f ⊗ g;

4. positive: f ◦ f = 0 iff f = 0;

5. involutive: f = f .

In particular, for any simple x ∈ C, we have Hom(x, x)→ Hom(x, x) which is canonically the conjugation on C.

To talk about adjoints, as a consequence we have an inner product on hom-sets: if x, y ∈ C are simple, then for
any f, g ∈ Hom(x, y ⊗ z) (called the splitting state space in physics; analogously, Hom(y ⊗ z, x) is called the fusion
state space), we set 〈f, g〉 = g ◦ f ∈ End(x) = C. More generally, for any f, g ∈ Hom(x⊗ y⊗ z, a⊗ b), we (omitting
tensor product symbols among objects of C) define the canonical isomorphism⊕

c,d

Hom(xy, c)⊗Hom(cz, d)⊗Hom(d, ab)
∼=→ Hom(xyz, ab).
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This can be illustrated diagramatically as PICTURE.

It is with respect to this inner product that we demand our structure isomorphisms be unitary.

Example 25. VecG and Rep(G) are both unitary, as are quantum fusion/modular categories. However, not all
fusion categories are unitary!

Let us describe Yang-Lee theory, which is not unitary. The simple objects are 1 and x, and the fusion rules are
determined by x ⊗ x ∼= 1 ⊕ x. (So far, this is identical to the Fibonacci theory.) The S and T matrices, however
(which are closely tied to the braiding), are given by

S = − 1√
3− φ

(
1 1− φ

1− φ −1

)
, T =

(
1 0
0 e−2πi/5

)
.

(Here, φ is the golden ratio.)

However, we have the following fact (Kitaev): Unitary fusion categories are pivotal and spherical. We also have
the fact (ENO): In unitary fusion categories, dim(C) = FPdim(C). An immediate consequence is that for any simple
x ∈ C, qdim(x) = FPdim(x) > 0. But in the theory described above, the object x has that qdim(x) = 1−φ < 0, so
that theory cannot be unitary. (Note that for unitary theories, quantum dimension is determined by the fusion rules
alone; if we were to play the game we’ve done in the past with the highest eigenvalue of the associated operator,
we’d get the quantum dimension of x for the Fibonacci theory.)

Remark 4. Sometimes (in fact, “often times”) the Galois twist of a unitary theory is not unitary. This is a rich
source of non-unitary theories.

In light of the above remark, we now examine the associator (xy)z → x(yz). (From now on today, the
letters x, y, z, . . . , a, b, c, . . . will denote simple objects, and we’ll omit tensor product signs.) For each
u ∈ C (simple), we have the pushforward Hom(u, (xy)z)→ Hom(u, x(yz)), which decomposes as

Hom(u, (xy)z) - Hom(u, x(yz))

⊕
c

Hom(u, cz)⊗Hom(c, xy)

o
6

F xyzu-
⊕
d

Hom(u, xd)⊗Hom(d, yz).

o
6

[SEE PICTURE] We call this a unitary F -matrix.

We claim that these matrices capture the data of the associator. Note that we’re witnessing a decategorification,
from natural transformations to unitary morphisms of Hilbert spaces.

In the language of unitary F -matrices, we can reformulate the pentagon axiom: diagramatically it looks precisely
like the one for the associahedron written in terms of rooted trees. [SEE PICTURE]

F xytu ◦ F pzwu = (idx ⊗ F yzws ) ◦ F xrwu ◦ (F xyzq ⊗ idw).

6.2 Algebro-linear data of fusion categories

Now, we’d like to introduce some degrees of freedom into this situation. First, we make choices of orthonormal bases
for splitting spaces. (Physicists call this gauge freedom.) Then, the pentagon axiom simply becomes an equality of
matrices: ∑

FF =
∑

(1⊗ F )F (F ⊗ F ) + complicated indexology.

Thus, (once we’ve fixed some fusion rules) a fusion category can be thought of as a solution to a system of algebraic
equations: item the pentagon axiom, the triangle axioms, and the unitarity axioms. All of these give rise to an
affine algebraic variety over R (because of the unitarity axioms, which involve complex conjugates). We will denote
this by X. We’d like to think of the points of X as unitary fusion categories, but since we made an arbitrary choice
of orthonormal bases, these also come with a choice of bases for splitting spaces. Dave sez: This is really just an
atlas for an algebraic stack.

Now, the gauge group is of course given by G =
∏

(a,b,c)∈C3 U(N c
ab), a product of unitary groups (recall that

N c
ab = dim Hom(c, ab)). Thus we have an algebraic action of G on X. We can now say what we mean by rigidity :

X/G is a discrete set.
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However, note that not all systems of fusion rules give rise to any unitary fusion categories. For instance, it
can be showed that a fusion category with two simple objects 1 and x, and with fusion rule x2 = 1⊕ 3x cannot be
made unitary.

Remark 5. This whole story can be carried over to the general case, replacing U(n) with GL(n).

6.3 Davydov-Yetter cohomology

To prove Ocneanu rigidity, we will define a “tangent complex” to X and show that its cohomology vanishes in
positive degrees; as a result, we’ll have that X/G is discrete. (We will follow the paper of A. Kitaev, a condensed
matter physicist, called Anyons.... This works for the unitary case; the general case is in E-N-O in On fusion
categories.)

We will denote by Γabc : Hom(c, ab) → Hom(c, ab) the basis change matrices; these are unitary isomorphisms.
Now, we haven’t mentioned it yet, but in addition to the unitary F -matrices are parameters α and β (which we’ll
avoid thinking about but nevertheless include or completeness); thus we think of points on X as triples (F, α, β).
Thus, suppose we have two points (F, α, β), (F ′, α′, β′) ∈ X. Then, a basis change from one point to the other takes
the form

F abcu (
∑
e

Γabe ⊗ Γecu ) = (
∑
f

Γafu ⊗ Γbcf )(F ′)abcu

αx = Γx1x γα
′
x

βx = Γ1x
x γβ

′
x.

Remark 6. This γ is part of the pair (Γ, γ) which in categorical terms amounts to a monoidal functor. To see this,
let Γab = [PICTURE], where {ψi} is an orthonormal basis for Hom(d, ab). This is a morphism in End(ab). Now,
part of the data of a monoidal functor is a morphism F (a)⊗ F (b)→ F (a⊗ b); thus, the underlying functor is the
identity (although of course the monoidal functor itself need not be trivial). Now, we also must have F (1) → 1,
and this is where γ comes from.

Now, what if we have two monoidal functors (Γ, γ) and (Φ, ϕ)? We know there should be a monoidal natural
isomorphism between them. We need to write this in linear-algebraic terms. Now, a monoidal natural transformation
is just a collection of numbers {hx}, where hx : x → x (where as always, x is simple). This ends up giving rise to
two additional equations:

Φabc =
hc
hahb

Γabc

ϕ = h1γ.

We now introduce infinitesimal deformations:

1. Since we’re taking small deformations of the identity, we have ha ≈ 1− iXa for Xa ∈ R.

2. Deforming the identity functor we have Γabc ≈ 1− iY abc for Y abc : Hom(c, ab)→ Hom(c, ab) Hermitian.

3. Deforming the fusion structure we have F abcu = F abcu (1 − iZabcu ) for Zabcu :
⊕

e Hom(u, ec) ⊗ Hom(e, ab) →⊕
e Hom(u, ec)⊗Hom(e, ab) Hermitian.

We should think of X, Y , and Z as infinitesimal. (We’re ignoring α, β, and γ, but they don’t figure in in any
essential way.)

Now, let’s see what we get when we feed 1 and 2 into 3. Up to first order,

Y abc = (Xb −Xc +Xa) · 1Hom(c,ab).

Similarly to before, we can introduce an operator Y ab (and its analog on the RHS), i.e. [PICTURE]; this smells a
whole lot like group cohomology, and indeed this gives rise to the tangent complex and Davydov-Yetter cohomology.
This has

Cn =
⊕

(a1,...,an)

Hom(a1 · · · an, a1 · · · an);
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in particular, we have {Y ab} ∈ C2 =
⊕

(a,b) Hom(ab, ab). This also suggests what our boundary operator should

be. We define dn0 : Cn → Cn+1 by adding in ida1 on the left, and for 0 < k ≤ n we fuse and split two interior
objects, and for dnn+1 we add on idan+1

on the right; of course we set dn =
∑

(−1)kdnk .

Now, from equation 3 above we get Y = dX; from equation 1 we get Z = dY ; from the pentagon axiom we
get dZ = 0. So for example, if Y = 0, then we’re not deforming Γ, and h becomes a small automorphism of the
identity automorphism ide of the identity functor e. Now, since dX = 0 then this must be monoidal. By equation
1, then if we set Z = 0 then the fusion structure is fixed; in this case, dY = 0 iff Y is monoidal. Now, if we are
allowing Z 6= 0, we still have that Z = dY , so what we’re getting is trivially equivalent to our original fusion theory,
obtained simply by a basis change. So for instance:

• H3 classifies deformations of the tensor structure (up to basis change);

• H2 classifies monoidal deformations of the identity functor (up to natural isomorphism);

• H1 classifies deformations of the identity natural transformation of ide.

From here, we can obtain rigidity as a consequence of the following theorem.

Theorem 9. H∗(C, d) vanishes in positive degrees.

This is Ocneanu rigidity (which actually just follows from H3 = 0). It says that one can take a fusion category
and apply small deformations of all the structure constants, but one will always obtain something equivalent. The
proof is not difficult (especially for those familiar with group cohomology, in which context this is expected since
for G a finite group and k a field of characteristic 0, H∗(G, k) = 0 in positive degrees), but we will not cover it
presently.

7 Group theoretical fusion categories (Udi)

Recall that if C is a fusion category andM is an indecomposable module category, then we define C∗M = FunC(M,M).
This is a monoidal category (with respect to composition of functors), and in fact it’s also a fusion category.
Moreover, there exists an algebra object A ∈ C such that M ∼= ModCA, and there is an equivalence C∗M ∼= BimodCA.
(If A ∈ C is an algebra, then ModCA, the category of right A-modules in C, is a C-module category.)

Definition 21. We say that a fusion category C is group theoretical if it is Morita equivalent to a pointed category,
i.e. there exists a C-module category M , a finite group G, and a 3-cocycle ω ∈ H3(G, k×) such that C∗M ∼= VecωG.

Example 26. Let G be a finite group which acts on another finite group N (by automorphisms). Recall that we
can construct the semi-direct product G n N . We now describe a new category. Its objects are N -graded vector
spaces which are simultaneously G-representations, compatible in the following sense: if n ∈ N and v ∈ Vn, then
g(v) ∈ Vg(n) for all g ∈ G. Morphisms are required to respect all the structure. We have notions of tensor product
for N -graded vector spaces and G-representations, and these fit together in the appropriate way.

Now, consider the category D = VecGnN . We will show that this is dual to C. To do so, we consider the algebra
A = kG ∈ D. Write M = ModDA, and consider D∗M ∼= BimodDA. We will describe a functor F : C → D∗M , assigning
a compatible N -graded G-rep to an A-bimodule in D. Suppose V =

⊕
Vn ∈ C. We set (F (V ))(g,n) = Vn, with

kG-bimodule structure given as follows. Write kG = span{Ug}. Then, we easily define the left action by defining
Ug ⊗ F (V )(h,n) → F (V )(gh,n) to be id : Ug ⊗ Vn → Vn. For the right action, we need to define F (V )(h,n) ⊗ Ug →
F (V )(hg,g−1ng), which is a map Vn ⊗ Ug → Vg−1ng. Luckily, we already have a map g−1 : Vn → Vg−1ng, which all
works out by the compatibility conditions for V ∈ C.

Other examples of group-theoretical fusion categories will be generalizations of this one.

Here are some facts.

Theorem 10. All fusion categories with Frobenius-Perron dimension pn (for p prime) are group theoretical.

Theorem 11. All fusion categories with Frobenius-Perron dimension pqr (for p, q, r distinct primes) are group
theoretical.

15



Given this, it is natural to ask: What does a “general” group theoretical fusion category look like?

To answer this, we first need to understand what a “general” module category over VecωG looks like. Above, we
took module categories for a group algebra. In fact, this is always the situation, except that we may actually need
to work with a twisted group algebra. Suppose H < G is a subgroup. Can we put an algebra structure on kH (i.e.
can we make it a monoid object in VecωG)? Of course, the only obstruction is the fact that we’ve got ω. In fact, this
will work iff ω|H is trivial. Let’s work this out. Write A = span{Uh}h∈H . We must have Uh1

·Uh2
= α(h1, h2)Uh1h2

.
To test against the twisted associativity of VecωG, we need that

(Uh1
· Uh2

) · Uh3
= α(h1, h2)Uh1h2

· Uh3
= α(h1, h2)α(h1h2, h3)Uh1h2h3

is the same thing as

ω(h1, h2h3)Uh1
· (Uh2

· Uh3
) = ω(h1, h2, h3)α(h2, h3)Uh1

· Uh2h3
= ω(h1, h2, h3)α(h2, h3)α(h1, h2h3)Uh1h2h3

.

That is, we need

(∂α)(h1, h2, h3) =
α(h1, h2)α(h1h2, h3)

α(h2, h3)α(h1, h2h3)
= ω(h1, h2, h3).

This is precisely the statement that ω|H ≡ 1 ∈ H3(H, k×). To summarize: For every H < G such that ω|H is
trivial, and for every α ∈ C2(H, k×) such that ∂α = ω|H , we get an algebra object in VecωG, and hence a module
category which we denote M(H,α). To ease notation, we write C(G,ω,H, α) = (VecωG)∗M(H,α).

Theorem 12. All module categories over VecωG are of the form M(H,α).

Now, suppose we have the category C(G,ω,H, α). These are just the bimodules for A = kαH inside C. To
understand this category, we’d like to understand its simple objects, i.e. the simple A-bimodules in C. Let’s begin
with the even more basic question: What are the simple A-modules in C? In general, this can be quite tricky. But
in the graded world, the extra structure drastically reduces the possibilities.

Proposition 11. Suppose m ∈ C is a simple right A-module. Then the support of m is contained in some coset
gH.

Proof. Given a homogeneous vector v ∈ m with |v| = g, then v · kαH must be all of m by the simplicity of m, and
it is supported on gH. In fact, for any coset gH, the translation of A by g gives us an irreducible module; in this
way, simple A-modules are in bijection with the set G/H. (Note that kg ⊗A is irreducible; if V ⊂ kg ⊗A, then V
contains some homogeneous nonzero element v ∈ kg ⊗A with |v| = gh, then it contains everything.)

Returning to the original question, suppose that X is a simple A-bimodule. By the argument above, X has
support on some double coset HgH. However, we must still determine how the two actions interact with each
other (this is how some actual representation theory will come into play). Let us write X =

⊕
a∈HgH Xa. For each

h ∈ H, we must have Lh : Uh ⊗Xa = Xa
∼→ Xha and Rh : Xa ⊗ Uh = Xa

∼→ Xah.

The compatibility conditions internal to the category VecωG twists the condition that these actions actually
commute with each other. First of all, we must have Lh1Lh2 = scalar · Lh1h2 and Rh1Rh2 = scalar · Rh2h1 .
The first scalar will be something like α(h1, h2)ω(h1, h2, a), and the second will be similar. But using the left
action, we can say that we know exactly how to identify any two vector spaces whose gradings are in the same
right coset, and the same is true with left and right reversed. So in fact, this reduces the problem to looking at
group actions on a single vector space. To be concrete, let’s consider Lh : Xa → Hha as identifications (for all
h). Then we have maps Rh2

: Xa → Xah2
. We need to worry if ah1 = h2a, or equivalently ah1a

−1 = h2, or
equivalently ah1a

−1 ∈ aHa−1 ∩ H. Let’s consider the subgroup gHg−1 ∩ H. If h ∈ gHg−1 ∩ H, then we get
Rg−1h−1gLh : Xg → Xhg → Xg; that is, we get a projective representation of gHg−1 ∩H, i.e. an action twisted by
a cocycle determined by α and ω. On the other hand, once we have a projective representation we can turn it into
a bimodule, and we get the following result.

Proposition 12. Simple A-bimodules in C with support in HgH correspond bijectively to simple representations
of kβ(gHg−1 ∩H), where β depends on α and ω. (The explicit formula for β is a bit ugly.)
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