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§1: TRACES IN DIFFERENTIAL GEOMETRY

X a (nice) topological space

its complex topological K-theory : the group-completion

KU(X ) := (VBdlC(X ),⊕)gp ,

a commutative ring via [E ] · [F ] := [E ⊗ F ].

the Chern character : a ring homomorphism

Thm.

KU(X ) Heven(X ;Q)ch

idea: Heven(X ;Q) is an approximation to KU(X ) (loses torsion)

chromatic homotopy theory: over Q, have Ĝa
∼= Ĝm (via exp/log)
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for X = M a smooth manifold, can get Chern character
KU(M)→ H∗dR(M) via Chern–Weil theory:

given E ↓ M, choose a connection ∇: for v ∈ TpM and section s,
∇v (s) ∈ Ep ≈ “derivative of s in the v direction”

get curvature, an End(E )-valued 2-form: for v ,w ∈ TpM,
F∇(v ,w) = ∇ṽ∇w̃ −∇w̃∇ṽ −∇[ṽ ,w̃ ] ṽ, w̃ any extensions of v,w

 F∇ ≈ “monodromy around infinitesimal parallelograms”

VBdl∇C (M) Ω∗dR(M)
tr(e iF/2π)
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§2: TRACES IN ALGEBRAIC GEOMETRY

X a scheme (variety / scheme / stack / derived stack)

its trace maps (to be explained):

VBdl(X ) THH(X ) ' O(LX ) ≈ Ω∗dR(X )

THC−(X ) ' O(LX )hT ≈ H∗dR(X )

K(X ) TC(X ) TODAY ≈ ???∗dR(X )

De
nn
is
tra
ce

cycl
ic tr

ace

cyclotomic trace

DAG HKR theorem
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VBdl(X ) THH(X ) ' O(LX )

THC−(X ) ' O(LX )hT

K(X ) TC(X ) ' TBD

De
nn
is
tra
ce

cycl
ic tr

ace

cyclotomic trace

X a scheme  VBdl(X ) ⊂ QC(X )

affine case: X = Spec(R)  Projf.g.R ⊂ ModR
derived version: Perf(X) ⊂ D(X ) := D(QC(X )) (triangulated category / stable ∞-category)

noncommutative version: R an associative ring  “VBdl(Spec(R))” := Projf.g.
R

K(X ) := the algebraic K-theory of X

:= K(VBdl(X )) ' K(Perf(X ))
E0 � E1 � E2  [E1] = [E0] + [E2] (not all sexseq’s / distinguished triangles split!)

can define K(C) for any C with “exact sequences”

enforce relations derivedly : record relations, relations between
relations, ...  K(X ) a spectrum ≈ chain complex
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Def. (V,�) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(C) :=

∫
S1
C :≈ colim

•

•
•

•

· · ·

· · ·
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M
C
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∆op ∆
op
	 Λop Λ̃op
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? trace-of-mdrmy is invariant under T-action (rotation of loops)  cyclic trace

Thm (Goodwillie ’86). The cyclic trace is a local Q-equivalence:
for R → R0 a nilpotent extension of connective ring spectra,

K(R) K(R0)

THC−(R) THC−(R0)

is a pullback after rationalization.

slogan: vbdl/Spec(R)
Q
≈ restriction to Spec(R0)
+ compatible trace-of-monodromy function
+ data of T-invariance of this function
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Goodwillie ’86: cyclic trace a local Q-equivalence

slogan: vbdl/Spec(R)
Q
≈ restriction to Spec(R0)

+ compatible trc-of-mdrmy function
+ data of T-invariance of this function

construction of the cyclotomic trace: Bökstedt–Hsiang–Madsen ’92

Thm (Dundas–McCarthy ’97). the cyclotomic trace is a local
equivalence (without rationalization!).

“This is how people other than Quillen compute algebraic K-theory.”
∼ A. Blumberg, algebraic K-theorist

Main Question: What is the geometry of TC(X )?
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§3: THE GEOMETRY OF THE CYCLOTOMIC TRACE

K(X )
cyclotomic trace−−−−−−−−−−−−−→ TC(X ) := THH(X )hCyc

THH is a cyclotomic spectrum; TC is the homotopy invariants of its cyclotomic structure

old defn via “genuine-equivariant” homotopy theory (useful (e.g. Poincaré duality), but no DAG meaning)

Sp Cyc(Sp)

∈ ∈

TC(X ) THH(X )

triv
⊥

(−)hCyc

right adjoint (limit-type construction): imposing conditions

recall: THH(X ) = functions on LX

main idea: TC(X ) = functions on LX that are:
invariant under T-action on LX ;
“sensitive” to relationship between S1 γ−→ X and
S1 r−→ S1 γ−→ X . Q. What does “sensitive” mean?
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relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(M r )?

Ex. 1: r = 2, M =


m1

. . .
mn

 ∈ Mn×n(R)

tr(M)2 =
∑
i ,j

mimj , tr(M2) =
∑
k

mkmk

both cyclically invariant, i.e. lie in the fixedpoints (R ⊗ R)C2

difference is norms: image of
∑

i<j [mi ⊗mj ] under

(R ⊗ R)C2 (R ⊗ R)C2

[x ⊗ y ]
∑

σ∈C2
σ(x ⊗ y)

Nm

 become equal in the Tate construction, the cofiber

(R ⊗ R)C2
Nm−−→ (R ⊗ R)C2 −→ (R ⊗ R)tC2

over Q, norm an iso!  (R ⊗ R)tC2 = 0, assertion is vacuous
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relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point:

for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,

S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).

Aaron Mazel-Gee The geometry of the cyclotomic trace



relationship between S1 γ−→ X and S1 r−→ S1 γ−→ X ...

Q. for M an n×n matrix, difference between tr(M)r and tr(Mr )?

Ex. 2: M =
(
m1

m2

)
∈ M2×2(R), r arbitrary

now, difference between
tr(M)⊗r = (m1 + m2)⊗r , tr(M⊗r ) = (m1)⊗r + (m2)⊗r

governed by binomial coefficients
(r
i

)
for 0 < i < r

key fact: these are never coprime to r

 quotient (R⊗r )Cr by norms from all proper subgroups of Cr

 tr(M r ) ≡ tr(M)r in generalized Tate construction (R⊗r )τCr

main point: for C a spectrally enriched ∞-category,
S1
b

r←− S1
a a covering map of framed circles,

get cyclotomic structure map

THH(C) :=

∫
S1
b

C −→

(∫
S1
a

C

)τCr

=: THH(C)τCr

doesn’t exist over Z! only have “Tate diagonal” in Sp, not D(Z).
Aaron Mazel-Gee The geometry of the cyclotomic trace



Thm (A–M-G–R).

Cyc(Sp) '

lim

r.lax

(
SphT := Fun(BT, Sp)

l.lax

x
τ

N×
)

.

? an object of limr.lax is given by T ∈ SphT equipped with:
for each r ∈ N×, a cyclotomic structure map T

σr−→ T τCr ;
for each r , s ∈ N×, the data of a commutative square

T T τCr

T τCrs (T τCs )τCr

σr

σrs (σs)τCr

can.

for each r1, . . . , rn ∈ N×, the data of a commutative n-cube...
Thms. sufficient conditions + reconstruction theorem for stratifications of stable ∞-categories (a.k.a.
generalized recollements), after Glasman. in general: C ' limr.lax(...l.lax...) . key examples:

? genuine G -spectra (G cpct Lie), e.g. SpgCp ' limr.lax( SphCp Sp(−)tCp ) [Greenlees–May]
? stratn of a scheme/stack Y (e.g. closed-open decomposition)  stratn of QC(Y ) [add pix here!]

 suggests that THH(X )↔ OLX for LX a stratified “cyclotomic” enhancement of LX ,
TC(X )↔ equivariant global functions on LX .
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the geometry of the cyclotomic trace:

K(X ) THH(X ) ' O(LX )

THC−(X ) ' O(LX )hT

TC(X ) ' O(LX )hCyc

Dennis trace

cyclic trace

cyclotom
ic
trace

Sp Cyc(Sp)

∈ ∈

TC(X ) THH(X )

triv
⊥

(−)hCyc

Cyc(Sp) '


 T y T ,


T

T τCr

σr


r∈N×

,


T T τCr

T τCrs (T τCs )τCr

σr

σrs (σs)τCr

can.


r ,s∈N×

, · · ·




TC(X ) is built from THH(X ) = O(LX ) by selecting just those
functions on LX such that:

values are T-invariant;
value on S1 γ−→ X determines value on S1 r−→ S1 γ−→ X “to the
greatest extent possible” (+ higher coherences)...

...which is precisely the structure present on trace-of-monodromy
functions of vector bundles! tr(M)r ≡ tr(Mr ), ...
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Q: where does the cyclotomic structure on THH come from?

Thm (A–M-G–R).

1

diagonal package for spaces

Cat(S) Cych(S)

S
THHS

fgt

packages diagonal maps for spaces: X→(X×r )hCr

Cych(S) := Fun(BW,S) := “unstable cyclotomic spaces”

BW := ( objects: framed S1’s , morphisms: covering maps )

2

diagonal package for spaces

Tate package for spectra

linearization

Cat(Sp) Cyc(Sp)

Sp
THH

fgt

packages Tate diagonal maps for spectra: E→(E⊗r )τCr

Cyc(Sp) := Cycτ(Sp) := cyclotomic spectra
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Q: where does the cyclotomic trace K→ TC come from?

Thm (A–M-G–R).

the unstable cyclotomic trace: for C a S-enriched ∞-category,

max` subgpd of C := ιC '
∫
D0C −→

(∫
S1C
)hW

=: THHS(C)hW =: TCh
S(C)

input: the fiber bundle S1 ↓ D0 is invariant for the W-action on S1

linearization

the cyclotomic trace: for C a stable ∞-category,

K(C) −→ THH(C)hCyc =: TC(C)

input: K-theory is the universal additive invariant of stable ∞-categories (Blumberg–Gepner–Tabuada)
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