The geometry of the cyclotomic trace

Aaron Mazel-Gee

with David Ayala and Nick Rozenblyum

o A naive approach to genuine G-spectra and cyclotomic spectra (arXiv:1710.06416)
@ Factorization homology of enriched co-categories (arXiv:1710.06414)
e The geometry of the cyclotomic trace (arXiv:1710.06409)
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X a (nice) topological space

its complex topological K-theory: the group-completion
KU(X) = (VBdlg(X),®)eP ,
a commutative ring via [E] - [F] := [E ® F].

the Chern character: a ring homomorphism
Thm.  KU(X) ch He*"(X; Q)

KUX)®Q

W

\

idea: H®*"(X; Q) is an approximation to KU(X) (loses torsion)
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§1: TRACES IN DIFFERENTIAL GEOMETRY

X a (nice) topological space

its complex topological K-theory: the group-completion
KU(X) = (VBdIc(X), D) ,

a commutative ring via [E] - [F] := [E ® F].

the Chern character: a ring homomorphism

Thm.  KU(X) ch He*"(X; Q)

\ =

KUX)®Q

idea: H®*"(X; Q) is an approximation to KU(X) (loses torsion)

chromatic homotopy theory: over Q, have @a >~ G (via exp/log)

Aaron Mazel-Gee The geometry of the cyclotomic trace



for X = M a smooth manifold, can get Chern character
KU(M) — H}x(M) via Chern—Weil theory:
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for X = M a smooth manifold, can get Chern character
KU(M) — H}x(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) — V\’}VVT/ - VWV\'} - V[\’;,VT/] V, W any extensions of v, w
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KU(M) — H}x(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
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~ FY = “monodromy around infinitesimal parallelograms”

Aaron Mazel-Gee The geometry of the cyclotomic trace



for X = M a smooth manifold, can get Chern character
KU(M) — H}x(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) — V\’}VVT/ - VWV\'} - V[\’;,VT/] V, W any extensions of v, w

~ FV =~ “monodromy around infinitesimal parallelograms”

r(eff /27
vBdiE (M) 0, 0 (m)
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for X = M a smooth manifold, can get Chern character
KU(M) — H}x(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) = Vr,VW - VWV\‘} — V[V,W] 7, W any extensions of v, w

~ FV =~ “monodromy around infinitesimal parallelograms”

r iF/2m
vBdig (M) 0, 0z (m)

|

Zir(M)
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for X = M a smooth manifold, can get Chern character
KU(M) — H}x(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) = Vr,VW - VWV\‘} — V[V,W] 7, W any extensions of v, w

~ FV =~ “monodromy around infinitesimal parallelograms”

tr(eiF/27r)
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]
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for X = M a smooth manifold, can get Chern character
KU(M) — H}x(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) = Vr,VW - VWV\‘} — V[V,W] 7, W any extensions of v, w

~ FV =~ “monodromy around infinitesimal parallelograms”

r(eff /27
vBdig (M) 0, 0z (m)
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for X = M a smooth manifold, can get Chern character
KU(M) — H}g(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) == VVVW - VWV\’} - V[‘ZW] V, W any extensions of v, w

~ FY ~ “monodromy around infinitesimal parallelograms”

tr(eiF/27r)

VBdIY (M) Qr(M)
i \\\\g J
VBdic(M) Z5a(M)

Har(M)
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for X = M a smooth manifold, can get Chern character
KU(M) — H}g(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) == VVVW - VWV\’} - V[‘ZW] V, W any extensions of v, w
~» FV a “monodromy around infinitesimal parallelograms”

tr(eiF/27r)

VBAIY (M) ——— Qip(M)

VBdlg(M) Z:o(M)

ir(M)
Hip (M
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for X = M a smooth manifold, can get Chern character
KU(M) — H}g(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,

V.(s) € Ep

~
~

“derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(v,w) =VyVy — VaVi — Vg g

~
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tr(eiF/27r)

V, W any extensions of v, w

FV =~ “monodromy around infinitesimal parallelograms”
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for X = M a smooth manifold, can get Chern character
KU(M) — H}g(M) via Chern—Weil theory:

given E | M, choose a connection V: for v € T,M and section s,
V.(s) € E, ~ “derivative of s in the v direction”

get curvature, an End(E)-valued 2-form: for v,w € T,M,
FV(V, W) == VVVW - VWV\’} - V[‘ZW] V, W any extensions of v, w

~ FY ~ “monodromy around infinitesimal parallelograms”

tr(eiF/27r)

VBdIZ (M) Ue(M)
\\j ]
VBdIc(M) Zir(M)
\\\\ﬂ
KU(M) > (M)
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§2: TRACES IN ALGEBRAIC GEOMETRY

X a scheme (variety / scheme / stack / derived stack)

its trace maps (to be explained):

VBdI(X) —— THH(X)  ~ 0(LX) ~ Qp(X)

~ Hgr(X)
~ 777
K(X) cyclotomic trace TC(X) TODAY o 'dR(X)
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cyclotomic trace
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cyclotomic trace

X ascheme ~  VBdI(X) C QC(X)

derived version: Perf(X) C 2(X) := 2(QC(X)) (triangulated category / stable co-category)
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cyclotomic trace

X ascheme ~  VBdI(X) C QC(X)
affine case: X = Spec(R) ~ Proj;g' C Modg

derived version: Perf(X) C 2(X) := 2(QC(X)) (triangulated category / stable co-category)

noncommutative version: R an associative ring ~»  “VBdI(Spec(R))" := ij;s-
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cyclotomic trace

X ascheme ~  VBdI(X) C QC(X)

derived version: Perf(X) C 2(X) := 2(QC(X)) (triangulated category / stable co-category)

noncommutative version: R an associative ring ~»  “VBdI(Spec(R))" := Proj:gg'

K(X) := the algebraic K-theory of X
= K(VBdI(X)) ~ K(Perf(X))
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K(X) N TC(X)  ~TBD

cyclotomic trace

X ascheme ~  VBdI(X) C QC(X)
affine case: X = Spec(R) ~ Proj;g' C Modg

derived version: Perf(X) C 2(X) := 2(QC(X)) (triangulated category / stable co-category)

noncommutative version: R an associative ring ~»  “VBdI(Spec(R))" := Proj:gg'

K(X) := the algebraic K-theory of X
= K(VBdI(X)) ~ K(Perf(X))

Eo — Ey - Ex  ~  [E1] = [Eo] + [E2] (not all sexseq’s / distinguished triangles split!)
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TC(X)  ~TBD

K(X)

R
cyclotomic trace

X ascheme ~  VBdI(X) C QC(X)
affine case: X = Spec(R) ~ Proj;'g' C Modg

derived version: Perf(X) C 2(X) := 2(QC(X)) (triangulated category / stable co-category)

noncommutative version: R an associative ring ~»  “VBdI(Spec(R))" := Proj:gg'
K(X) := the algebraic K-theory of X
— K(VBAI(X)) ~ K(Perf(X))
Eo — Ey - Ex  ~  [E1] = [Eo] + [E2] (not all sexseq’s / distinguished triangles split!)

can define K(C) for any C with “exact sequences”
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cyclotomic trace

X ascheme ~  VBdI(X) C QC(X)
affine case: X = Spec(R) ~ Proj;f" C Modg

derived version: Perf(X) C 2(X) := 2(QC(X)) (triangulated category / stable co-category)

noncommutative version: R an associative ring ~»  “VBdI(Spec(R))" := Proj:gg'

K(X) := the algebraic K-theory of X
= K(VBdI(X)) ~ K(Perf(X))

Eo — Ey - Ex  ~  [E1] = [Eo] + [E2] (not all sexseq’s / distinguished triangles split!)

can define K(C) for any C with “exact sequences”

enforce relations derivedly: record relations, relations between
re|ati0ns, ~> K(X) a SpeCtrUm ~ chain complex
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Def. (V,X) a monoidal category, € a V-enriched category,
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Def. (V,X) a monoidal category, € a V-enriched category,
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VBAI(X) —— THH(X) =~ 6(£X)

y
e

K(X) ———— TC(X)  ~TBD

cyclotomic trace

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over

the circle:
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VBAI(X) —— THH(X) =~ 6(£X)

~ G(LX)MT

~ TBD

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /e ~ colim (hmne(XO,Xl)& &home(Xn,Xo)).

St x
X1
Xo

%,
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VBAI(X) —— THH(X) =~ 6(£X)

I

THC(X) =~ o(LX)"

=
KX) S asemic e’ TC(X) - =TBD

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /518 ~ colim (hmne(XO,Xl)& &home(Xn,Xo)).

X
X0

V = 8p = spectra ~»  topological Hochschild homology (THH)
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I
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=
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Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /518 ~ colim (hmne(XO,Xl)& &home(Xn,Xo)).
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X0

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))
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VBAI(X) —— THH(X) =~ 6(£X)

I

THC(X) =~ o(LX)"

o
KX) S asemic e’ TC(X) - =TBD

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /518 ~ colim (home(xo,xl)x &home(Xn,Xo)).

X
X0

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp 2 2(R), just like Set = Modg.
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VBAI(X) —— THH(X) =~ 6(£X)

I

THC(X) =~ o(LX)"

&
KX asame e TCX) - =TBD

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /518 ~ colim (home(xo,xl)x &home(Xn,Xo)).

X
X0

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)
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Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /518 ~ colim (home(xo,xl)x &home(Xn,Xo)).

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)
THH(X) := THH(VBI(X)) =~ THH(Perf(X))
have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

(M, A)— [1y A

Mfid, x Algs, (V) —— M= v

/’/\‘/’
PRy
k PO

Mfld, x Catn(V)
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Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)
THH(X) := THH(VBI(X)) =~ THH(Perf(X))
have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)
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Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)
THH(X) := THH(VBI(X)) =~ THH(Perf(X))
have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algg, (V) _ WA,
. o simplicial

ot AP
B ’\/Mi@\\/ ‘

Mfld, x Catn(V)
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Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algg, (V) _ WA,
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et AP
s
R\ 51

Mfld, x Catn(V)
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o
cyclotomic trace

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algs, (V) _ MA=ImA
N > - simplicial paracyclic
,/'/:\/N\\" A°P A°P
ey )
Lo\ 51

Mfld, x Catn(V)
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cyclotomic trace

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algg, (V) _ WA,
N > - simplicial paracyclic
,/'/:\/N\\" A°P A°P
ey )
Lo\ 51 st

Mfld, x Catn(V)
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Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algg, (V) _ WA,
N ~ el simplicial paracyclic cyclic
~ :\N\\ AP A°P A°P
e
st st

Mfld, x Catn(V)

Aaron Mazel-Gee The geometry of the cyclotomic trace



~ TBD

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algg, (V) _ WA,
N ~ el simplicial paracyclic cyclic
~ :\N\\ AP A°P A°P
e
st st S & auto’s

Mfld, x Catn(V)
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K(X) ———— TC(X)  ~TBD
Cyclotomic trace

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algs, (V) _ MA=ImA
~ ~ el simplicial paracyclic cyclic epicyclic
It AoP AP A°P AoP
,»&,G X
st st S & auto's

Mfld, x Catn(V)
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K(X) ———— TC(X)  ~TBD
Cyclotomic trace

Def. (V,X) a monoidal category, C a V-enriched category, the
Hochschild homology of C is its factorization homology over
the circle:

HH(E) = /516 ~ colim (home(xo,xl)x &home(Xn,Xo)>.

X
X0

X,

V = 8p = spectra ~»  topological Hochschild homology (THH)

THH(X) := THH(VBdI(X)) ~ THH(Perf(X))

have free/forget adjunction Sp = 2(R), just like Set = Modg. (in fact, Sp = 2(8et)!)

M,A)— A
Mfid, x Algs, (V) _ WAmImA
~ ~ el simplicial paracyclic cyclic epicyclic
~ :\N\\ AP A°P A°P Aop
,»&,G )
st st S & auto's S & endo’s

Mfld, x Catn(V)
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T LX := the free loopspace of X (necessarily derived)

THC(X)  ~ O(LX)MT
°/ T := the circle group
K(X) w%:(m» TC(X) ~TBD
K(X) Dennis trace THH(X) ~ ﬁ(LX)
E free loop trace of monodromy of
I —
st x y*E | St
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LX := the free loopspace of X (necessarily derived)

T := the circle group

K(X) Dennis trace THH(X) ~ ﬁ(LX)
£ free loop trace of monodromy of
s x VELS!

* trace-of-mdrmy is invariant under T-action (rotation of loops) ~»  cyclic trace
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* trace-of-mdrmy is invariant under T-action (rotation of loops) ~»  cyclic trace

Thm (Goodwillie '86). The cyclic trace is a local Q-equivalence:

Aaron Mazel-Gee The geometry of the cyclotomic trace



LX := the free loopspace of X (necessarily derived)

T := the circle group

K(X) Dennis trace THH(X) ~ ﬁ(LX)
£ free loop trace of monodromy of
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* trace-of-mdrmy is invariant under T-action (rotation of loops) ~»  cyclic trace

Thm (Goodwillie '86). The cyclic trace is a local Q-equivalence:
for R — Ry a nilpotent extension of connective ring spectra,
K(R) ——— K(Ro)

THC=(R) —— THC(Ry)
is a pullback after rationalization.
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is a pullback after rationalization.
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LX := the free loopspace of X (necessarily derived)

T := the circle group

K(X) Dennis trace THH(X) ~ ﬁ(LX)
£ free loop trace of monodromy of
— W s2x VELS!

* trace-of-mdrmy is invariant under T-action (rotation of loops) ~»  cyclic trace

Thm (Goodwillie '86). The cyclic trace is a local Q-equivalence:
for R — Ry a nilpotent extension of connective ring spectra,
K(R) ——— K(Ro)

THC=(R) —— THC(Ry)
is a pullback after rationalization.

O

slogan: vbdl/Spec(R) ~ restriction to Spec(Ro)
+ compatible trace-of-monodromy function
+ data of T-invariance of this function
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Goodwillie '86: cyclic trace a local Q-equivalence

slogan: vbdl/Spec(R) g restriction to Spec(Ro)
+ compatible trc-of-mdrmy function

K(X) ———— TC(X) ~ 77 + data of T-invariance of this function

cyclotomic trace
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~ 0(LX) Goodwillie '86: cyclic trace a local Q-equivalence

~ O(LX)T slogan: vbdl/Spec(R) g restriction to Spec(Ro)
+ compatible trc-of-mdrmy function

~ + data of T-invariance of this function

construction of the cyclotomic trace: Bokstedt—Hsiang—Madsen '92
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~ 0(LX) Goodwillie '86: cyclic trace a local Q-equivalence

~ O(LX)T slogan: vbdl/Spec(R) g restriction to Spec(Rop)
+ compatible trc-of-mdrmy function
~ + data of T-invariance of this function

construction of the cyclotomic trace: Bokstedt—Hsiang—Madsen '92

Thm (Dundas—McCarthy '97). the cyclotomic trace is a local
equivalence (without rationalization!).
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VBdI(X) ———— THH(X) =~ 6(£X) Goodwillie '86: cyclic trace a local Q-equivalence

~ O(LX)T slogan: vbdl/Spec(R) g restriction to Spec(Ro)
+ compatible trc-of-mdrmy function
+ data of T-invariance of this function

c\i“\‘L
KX) Sasomicraee” TEX) =777

construction of the cyclotomic trace: Bokstedt—Hsiang—Madsen '92

Thm (Dundas—McCarthy '97). the cyclotomic trace is a local
equivalence (without rationalization!).

“This is how people other than Quillen compute algebraic K-theory.”
~ A. Blumberg, algebraic K-theorist
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~ 0(LX) Goodwillie '86: cyclic trace a local Q-equivalence

~ O(LX)T slogan: vbdl/Spec(R) g restriction to Spec(Rgp)
+ compatible trc-of-mdrmy function
~ + data of T-invariance of this function

construction of the cyclotomic trace: Bokstedt—Hsiang—Madsen '92

Thm (Dundas—McCarthy '97). the cyclotomic trace is a local
equivalence (without rationalization!).

“This is how people other than Quillen compute algebraic K-theory.”
~ A. Blumberg, algebraic K-theorist

Main Question: What is the geometry of TC(X)?
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K(X) TC(X) := THH(X)"*

old defn via “genuine-equivariant” homotopy theory (useful (e.g. Poincaré duality), but no DAG meaning)
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cyclotomic trace
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old defn via “genuine-equivariant” homotopy theory (useful (e.g. Poincaré duality), but no DAG meaning)

TC(X) +—— THH(X)
right adjoint (limit-type construction): imposing conditions

recall: THH(X) = functions on £X

Aaron Mazel-Gee The geometry of the cyclotomic trace



§3: THE GEOMETRY OF THE CYCLOTOMIC TRACE

K(X) cyclotomic trace TC(X) — THH(X)hCyc

old defn via “genuine-equivariant” homotopy theory (useful (e.g. Poincaré duality), but no DAG meaning)

TC(X) +—— THH(X)
right adjoint (limit-type construction): imposing conditions
recall: THH(X) = functions on £X

main idea:
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K(X) cyclotomic trace TC(X) — THH(X)hCyc

old defn via “genuine-equivariant” homotopy theory (useful (e.g. Poincaré duality), but no DAG meaning)

TC(X) «———— THH(X)
right adjoint (limit-type construction): imposing conditions
recall: THH(X) = functions on £X
main idea: TC(X) = functions on £X that are:

@ invariant under T-action on £X;

e "sensitive” to relationship between S 2 X and
stLSst L X,
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§3: THE GEOMETRY OF THE CYCLOTOMIC TRACE

K(X) cyclotomic trace TC(X) — THH(X)hCyc

old defn via “genuine-equivariant” homotopy theory (useful (e.g. Poincaré duality), but no DAG meaning)

TC(X) «———— THH(X)
right adjoint (limit-type construction): imposing conditions
recall: THH(X) = functions on £X
main idea: TC(X) = functions on £X that are:

@ invariant under T-action on £X;

e "sensitive” to relationship between S 2 X and
st gt 7 x. Q. What does “sensitive” mean?
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relationship between S! > X and S' 5 51 1 X...
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Q. for M an nx n matrix, difference between tr(M)" and tr(M")?
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relationship between S! > X and S' 5 51 1 X...

Q. for M an nx n matrix, difference between tr(M)" and tr(M")?

Ex. 1: r =2, M:( L )GM,,X,,(R)
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relationship between S! > X and S' 5 51 1 X...

Q. for M an nx n matrix, difference between tr(M)" and tr(M")?

Ex. 1: r =2, M:( L )GM,,X,,(R)

tr(M)? = Z mj-mj
isj
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relationship between S! > X and S' 5 51 1 X...

Q. for M an nx n matrix, difference between tr(M)" and tr(M")?

Ex. 1: r =2, M:( L )GM,,X,,(R)

tr(M)? = Z mi-m; , tr(M?) = Z my - my
i k
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relationship between S! > X and S' 5 51 1 X...

Q. for M an nx n matrix, difference between tr(M)" and tr(M")?

Ex. 1: r =2, M:( L )GM,,X,,(R)

(M) =>"mem , tr(M®)=>"me e m
ij k

e both cyclically invariant, i.e. lie in the fixedpoints (R @ R)®?
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o difference is norms:
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relationship between S! > X and S' 5 51 1 X...

Q. for M an nx n matrix, difference between tr(M)" and tr(M")?

Ex.l:r::2,A4::( L ) € Msen(R)

(M) =>"mem , tr(M®)=>"me e m
ij k

e both cyclically invariant, i.e. lie in the fixedpoints (R @ R)®?

o difference is norms: image of >, :[m; ® m;] under
(R®R)g, —™—— (R®R)®

x@y] 3 o(x®Y)
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relationship between S! > X and S' 5 51 1 X...

Q. for M an nx n matrix, difference between tr(M)" and tr(M")?

Ex. 1: r =2, M:( L )GM,,X,,(R)

(M) =>"mem , tr(M®)=>"me e m
ij k

e both cyclically invariant, i.e. lie in the fixedpoints (R @ R)®?

o difference is norms: image of >, :[m; ® m;] under
(R®R)g, —™—— (R®R)®

x@y] 3 o(x®Y)

~»  become equal in the Tate construction, the cofiber
(R®R)e, ™™ (R® R)© — (R® R)'@
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relationship between S! > X and S' 5 51 1 X...

Q. for M an nx n matrix, difference between tr(M)" and tr(M")?

Ex.l:r::2,A4::( L ) € Msen(R)

(M) =>"mem , tr(M®)=>"me e m
ij k

e both cyclically invariant, i.e. lie in the fixedpoints (R @ R)®?

o difference is norms: image of >, :[m; ® m;] under
(R®R)g, —™—— (R®R)®

x@y] ———— Y peqo(x®y)
~»  become equal in the Tate construction, the cofiber
(R®R)g, =™ (R® R)? — (R® R)™C

over @, norm aniso!  ~ (R® :’?)tc2 = 0, assertion is vacuous
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relationship between st 2 Xand ST L st XL

Q. for M an nXx n matrix, difference between tr(M)" and tr(M")?

Ex. 2: M = (’"1 m2) € May2(R), r arbitrary
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relationship between st 2 Xand ST L st XL

Q. for M an nXx n matrix, difference between tr(M)" and tr(M")?

Ex. 2: M = (’"1 m2) € May2(R), r arbitrary
now, difference between

tr(M)®" = (my + mp)®" , tr(M®") = (my)®" + (mp)®"
governed by binomial coefficients (}) for 0 <i < r
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relationship between st 2 Xand ST L st XL

Q. for M an nXx n matrix, difference between tr(M)" and tr(M")?

Ex. 2: M = (’"1 m2) € May2(R), r arbitrary
now, difference between

tr(M)®" = (my + mp)®" , tr(M®") = (my)®" + (mp)®"
governed by binomial coefficients (}) for 0 <i < r

key fact: these are never coprime to r
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relationship between st 2 Xand ST L st XL

Q. for M an nXx n matrix, difference between tr(M)" and tr(M")?

Ex. 2: M = (’"1 m2) € May2(R), r arbitrary
now, difference between
tr(M)®" = (m+m2)®" , tr(M®") = (my)®" + (m)*"
governed by binomial coefficients (f) forO<i<r
key fact: these are never coprime to r

~~  quotient (R®")¢ by norms from all proper subgroups of C,
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relationship between st 2 Xand ST L st XL

Q. for M an nXx n matrix, difference between tr(M)" and tr(M")?

Ex. 2: M = (’"1 m2) € May2(R), r arbitrary
now, difference between

tr(M)®" = (m+m2)®" , tr(M®") = (my)®" + (m)*"
governed by binomial coefficients (f) forO<i<r
key fact: these are never coprime to r
~~  quotient (R®")¢ by norms from all proper subgroups of C,
~s  tr(M") = tr(M)" in generalized Tate construction (R®")*¢

main point: for € a spectrally enriched co-category,
St <"~ S} a covering map of framed circles,
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relationship between st 2 Xand ST L st XL

Q. for M an nXx n matrix, difference between tr(M)" and tr(M")?

Ex. 2: M = (’"1 m2) € May2(R), r arbitrary
now, difference between

(M) = (mn + ma)® | tr(MP7) = (m)® + ()"
governed by binomial coefficients (f) forO<i<r
key fact: these are never coprime to r
~~  quotient (R®")¢ by norms from all proper subgroups of C,
~s  tr(M") = tr(M)" in generalized Tate construction (R®")*¢
main point: for € a spectrally enriched co-category,

St <"~ S} a covering map of framed circles,
get cyclotomic structure map

TC,
THHC) == [ ¢ — (/ e) =: THH(E)™™
s}

S
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relationship between st 2 Xand ST L st XL

Q. for M an nXx n matrix, difference between tr(M)" and tr(M")?

Ex. 2: M = (’"1 m2) € May2(R), r arbitrary
now, difference between

(M) = (mn + ma)® | tr(MP7) = (m)® + ()"
governed by binomial coefficients (f) forO<i<r
key fact: these are never coprime to r
~~  quotient (R®")¢ by norms from all proper subgroups of C,
~s  tr(M") = tr(M)" in generalized Tate construction (R®")*¢
main point: for € a spectrally enriched co-category,

St <"~ S} a covering map of framed circles,
get cyclotomic structure map

TG,
THH(C) = [ ¢ — / e =: THH(Q)™™
s} st
doesn't exist over Z! only have “Tate diagonal” in Sp, not Z(Z).



Thm (A-M-G-R).
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Thm (A-M-G-R).

Cyc(Sp) ~

Aaron Mazel-Gee The geometry of the cyclotomic trace



Thm (A-M-G-R).

Cyc(Sp) ~ Sp"T .= Fun(BT, Sp)
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Thm (A-M-G-R).

Cyc(Sp) ~ SphT
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Thm (A-M-G-R).

Cyc(Sp) ~ (Spmr A NX)

T
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Thm (A-M-G-R).

Cyc(Sp) ~ (Spmr R NX)

T
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Thm (A-M-G-R).

Cyc(Sp) ~ lim (Spmr R NX)

T
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Thm (A-M-G-R).

Cyc(Sp) ~ lim"2 (Spmr R NX)

T
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Thm (A-M-G-R).

Cyc(Sp) ~ lim"2 (Spmr =y NX) .

T
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (Spmr =y NX) .

r.lax

* an object of lim is given by T € Sp"T equipped with:
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (Spmr =y NX) .

r.lax

* an object of lim is given by T € Sp"T equipped with:

o for each r € N*,
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (Spmr =y NX) .

r.lax

* an object of lim is given by T € Sp"T equipped with:

@ for each r € N*, a cyclotomic structure map T Iry TG
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (Spmr =y NX) .

* an object of lim™2* is given by T € Sp"T equipped with:
@ for each r € N*, a cyclotomic structure map T Iry TG

o for each r,s € N*,
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (SphTr =y NX) .

r.lax

* an object of lim is given by T € Sp"T equipped with:
@ for each r € N*, a cyclotomic structure map T Iry TG
@ for each r,s € N*, the data of a commutative square

T or TTC,

Jrsl l(gs yeer

TTC,S —— (TTCS)TCr
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Thm (A-M-G-R).

T

Cyc(Sp) ~ lim"2 (SphTr =y NX) .

* an object of lim™2* is given by T € Sp"T equipped with:

@ for each r € N*, a cyclotomic structure map T Iry TG

@ for each r,s € N*, the data of a commutative square

T or TTC,

Jrsl l(gs yeer

TTC,S —— (TTCS)TCr

e foreach n,...,r, € N,
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Thm (A-M-G-R).

T

Cyc(Sp) ~ lim"2 (SphTr =y NX) .

* an object of lim™2* is given by T € Sp"T equipped with:

@ for each r € N*, a cyclotomic structure map T Iry TG

@ for each r,s € N*, the data of a commutative square

T or TTC,

Jrsl l(gs yeer

TTC,S —— (TTCS)TCr

o for each r1,...,r, € N*, the data of a commutative n-cube...
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (Spmr =y NX) .

T

* an object of lim™2* is given by T € Sp"T equipped with:
@ for each r € N*, a cyclotomic structure map T Iry TG
@ for each r,s € N*, the data of a commutative square

T or TTC,

Thm. [Nikolaus—Scholze]

for T connective and r=s=p prime
Cor.: suff to specify just op Jrsl l(o—s)’fcr
(since opn = (0p)°", and n-cubes
canonically commute V n> 2) TCr ~ ( TC. )TC
= s S s r
T can. T

o for each r1,...,r, € N*, the data of a commutative n-cube...
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (S hT LR NX) .

r.lax

* an object of lim™? is given by T € Sp"™ equipped with:
e for each r € N*, a cyclotomic structure map T 25 T,

@ for each r,s € N*, the data of a commutative square

Or
Thm. [Nikolaus—Scholze] T e TTC,
for T connective and r=s=p prime
Cor.: suff to specify just op Jrsi J’(O—S)Tcr
(since opn = (0p)°", and n-cubes
canonically commute V n> 2) TCrs ~ ( TCs )TCr
T can T

o for each r1,...,r, € N*, the data of a commutative n-cube...

Thms. sufficient conditions + reconstruction theorem for stratifications of stable co-categories (a.k.a.

lax
(.

generalized recollements), after Glasman. in general: € ~ lim" I N E S
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (S hT LR NX) .

r.lax

* an object of lim™? is given by T € Sp"™ equipped with:
e for each r € N*, a cyclotomic structure map T 25 T,

@ for each r,s € N*, the data of a commutative square

Or
Thm. [Nikolaus—Scholze] T e TTC,
for T connective and r=s=p prime
Cor.: suff to specify just op Jrsi J’(O—S)Tcr
(since opn = (0p)°", and n-cubes
canonically commute V n> 2) TCrs ~ ( TCs )TCr
T can T

o for each r1,...,r, € N*, the data of a commutative n-cube...

Thms. sufficient conditions + reconstruction theorem for stratifications of stable co-categories (a.k.a.

lax
(.

generalized recollements), after Glasman. in general: € ~ lim" ..Ilax...) . key examples:
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Thm (A-M-G-R).
Cyc(Sp) ~ lim"2 (S hT LR NX) .

r.lax

* an object of lim is given by T € Sp"T equipped with:
@ for each r € N*, a cyclotomic structure map T Iry TG

@ for each r,s € N*, the data of a commutative square

Or
Thm. [Nikolaus—Scholze] T e TTC’
for T connective and r=s=p prime
Cor.: suff to specify just op O',SJ J’(US)TCr
(since opn = (0p)°", and n-cubes
canonically commute V n> 2) TCrs ~ T1Cs \TC;
T can (T )

o for each r1,...,r, € N*, the data of a commutative n-cube...

Thms. sufficient conditions + reconstruction theorem for stratifications of stable co-categories (a.k.a.

rlax(

generalized recollements), after Glasman. in general: € ~ lim Llax...) . key examples:

* genuine G-spectra (G cpct Lie), e.g. SpECP ~ Iim"'lax( Spl"cl’ —(—)t€ — 8p )  [Greenlees—May]
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Thm (A-M-G-R).

Cyc(Sp) ~ lim"12x Sp hT ”ax N*

T

* an object of lim™2* is given by T € Sp"T equipped with:
@ for each r € N*, a cyclotomic structure map T Iry TG

@ for each r,s € N*, the data of a commutative square

Or
Thm. [Nikolaus—Scholze] T e TTC’
for T connective and r=s=p prime
Cor.: suff to specify just op O',SJ J’(US)TCr
(since opn = (0p)°", and n-cubes
canonically commute V n> 2) TCrs ~ T1Cs \TC;
T can ( T )

o for each r1,...,r, € N*, the data of a commutative n-cube...

Thms. sufficient conditions + reconstruction theorem for stratifications of stable co-categories (a.k.a.

generalized recollements), after Glasman. in general: € ~ lim" Ia"((,.,I.Iax“.) . key examples:

* genuine G-spectra (G cpct Lie), e.g. SpECP ~ Iim"'lax( Spl"cl’ —(—)t€ — 8p )  [Greenlees—May]
* strat™ of a scheme/stack Y (e.g. closed-open decomposition) ~~ strat” of QC(Y) [add pix here!]
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Thm (A-M-G-R).

Cyc(Sp) ~ lim™ ( SphT RN

T

* an object of lim™2* is given by T € Sp"T equipped with:
@ for each r € N*, a cyclotomic structure map T Iry TG

@ for each r,s € N*, the data of a commutative square

Or
Thm. [Nikolaus—Scholze] T e TTC’
for T connective and r=s=p prime
Cor.: suff to specify just op O',Sl l(o-s)’fcr
(since opn = (0p)°", and n-cubes
canonically commute V n> 2) TCrs ~ T1Cs \TC;
T can. ( T )

o for each r1,...,r, € N*, the data of a commutative n-cube...

Thms. sufficient conditions + reconstruction theorem for stratifications of stable co-categories (a.k.a.

generalized recollements), after Glasman. in general: C ~ Iimr’lax(,.,l.lax“.) . key examples:

* genuine G-spectra (G cpct Lie), e.g. SpECP ~ Iim"lax( Spl"cp —(—)t€ — 8p )  [Greenlees—May]

* strat™ of a scheme/stack Y (e.g. closed-open decomposition) ~~ strat” of QC(Y) [add pix here!]

suggests that THH(X) <> O o x for £ X a stratified “cyclotomic” enhancement of £X,
TC(X) <> equivariant global functions on £ X.
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the geometry of the cyclotomic trace:

Aaron Mazel-Gee The geometry of the cyclotomic trace



the geometry of the cyclotomic trace:

Dennis trace THH(X) ~ (LX)

THC™(X) ~ O(£X)"

) = a(exyor
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the geometry of the cyclotomic trace:

K(X) Dennis trace THH(X) ~ (/(LX) triv
K _
Sp - L Cyc(Sp)
THC (X) =~ 6(£x)"T (e w

| TC(X) +———— THH(X)
TC(X) ~ O(Lx)hoe
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the geometry of the cyclotomic trace:

K(X) Dennis trace THH(X) ~ (/(LX) triv
K _—
Sp - L Cyc(Sp)
hCyc
THC(X) =~ O(LX)MT w (=) w

| TC(X) +———— THH(X)
TC(X) ~ O(Lx)hoe

T T o TeC
Cye(8p) = | TaT. { | Sy L=
T . puc— L

r,sENX
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the geometry of the cyclotomic trace:

K(X) Dennis trace THH(X) ~ (/(LX) tl’iV
N B
&\, - P Cye(Se)
5N T THC(X) = a(LX)T w - w

%N
EAS
EXN
SN

y TC(X) +———— THH(X)
TC(X) ~ O(Lx)hoe

T T o TeC
Cye(8p) = | TaT. { | g L=
T . puc— L

r,sENX

TC(X) is built from THH(X) = (LX) by selecting just those
functions on £X such that:
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the geometry of the cyclotomic trace:

K(X) Dennis trace THH(X) ~ (/(LX) tl’iV
N B
&\, - P Cye(Se)
5N T THC(X) = a(LX)T w - w

%N
EAS
EXN
SN

y TC(X) +———— THH(X)
TC(X) ~ O(Lx)hoe

T T o TeC
Cye(8p) = | TaT. { | g L=
T . puc— L

r,sENX

TC(X) is built from THH(X) = (LX) by selecting just those
functions on £X such that:

@ values are T-invariant;
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the geometry of the cyclotomic trace:

K(X) Dennis trace THH(X) ~ 6(£X) triv
Sp T Cye(S
a\ e P e ye(Se)
5N THC™(X) ~ O(£X)" w w
W, TC(X) ¢+ THH(X)
TCX) ~ o(LX)hCe
T T o TeC
Cye(8p) = | TaT. { | g L=
T . puc— L

r,sENX

TC(X) is built from THH(X) = (LX) by selecting just those
functions on £X such that:

@ values are T-invariant;

e value on ST X5 X determines value on ST 5 ST 25 X “to the
greatest extent possible” (+ higher coherences)...
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the geometry of the cyclotomic trace:

K(X) Dennis trace THH(X) ~ 6(£X) triv
Sp T Cye(S
a\ e P e ye(Se)
5N THC™(X) ~ O(£X)" w w
W, TC(X) ¢+ THH(X)
TCX) ~ o(LX)hCe
T T o TeC
Cye(Sp) = {| TAT. ¢ | ] ) L=
T . puc— L

r,sENX

TC(X) is built from THH(X) = (LX) by selecting just those
functions on £X such that:

@ values are T-invariant;

e value on ST X5 X determines value on ST 5 ST 25 X “to the
greatest extent possible” (+ higher coherences)...

...which is precisely the structure present on trace-of-monodromy
functions of vector bundles! )y = trury, ...
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Q: where does the cyclotomic structure on THH come from?
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Q: where does the cyclotomic structure on THH come from?
Thm (A-M-G-R).

Aaron Mazel-Gee The geometry of the cyclotomic trace



Q: where does the cyclotomic structure on THH come from?
Thm (A-M-G-R).

o

diagonal package for spaces

Aaron Mazel-Gee The geometry of the cyclotomic trace



Q: where does the cyclotomic structure on THH come from?
Thm (A-M-G-R).

o Cat(8) ----- » Cyc"(8)

diagonal package for spaces —~~~~~ lfgt
THH;
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Q: where does the cyclotomic structure on THH come from?
Thm (A-M-G-R).

o Cat(8) ----- » Cyc"(8)

diagonal package for spaces —~~~~~ lfgt
THH;

packages diagonal maps for spaces: X—(X*")hCr
CycM(8) := Fun(BW,8) := “unstable cyclotomic spaces”

BW := ( objects: framed S''s , morphisms: covering maps )
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Q: where does the cyclotomic structure on THH come from?
Thm (A-M-G-R).

o Cat(8) ----- » Cyc"(8)

diagonal package for spaces —~~~~~ lfgt
THH;

packages diagonal maps for spaces: X—(X*")hCr
CycM(8) := Fun(BW,8) := “unstable cyclotomic spaces”
BW := ( objects: framed S''s , morphisms: covering maps )

(2}

diagonal package for spaces

Iinearizationé

Tate package for spectra
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Q: where does the cyclotomic structure on THH come from?
Thm (A-M-G-R).

o Cat(8) ----- » Cyc"(8)

diagonal package for spaces —~~~~~ lfgt
THH;

packages diagonal maps for spaces: X—(X*")hCr
CycM(8) := Fun(BW,8) := “unstable cyclotomic spaces”

BW := ( objects: framed S''s , morphisms: covering maps )

(2]
diagonal package for spaces
Iinearizationé
Cat(Sp) ----- » Cyc(Sp)
Tate package for spectra —~~nms \ lfgt
THH
Sp
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Q: where does the cyclotomic structure on THH come from?
Thm (A-M-G-R).

o Cat(8) ----- » Cyc"(8)
diagonal package for spaces —~~~~~ \ lfgt
THH
packages diagonal maps for spaces: X—(X*")hCr 8
CycM(8) := Fun(BW,8) := “unstable cyclotomic spaces”
BW := ( objects: framed S''s , morphisms: covering maps )
(2]
diagonal package for spaces
Iinearizationé
Cat(Sp) ----- » Cyc(Sp)
Tate package for spectra —~~nms J(fgt
THH
Sp

packages Tate diagonal maps for spectra: E—(E®")TCr
Cyc(Sp) := Cyc™(Sp) := cyclotomic spectra
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Q: where does the cyclotomic trace K — TC come from?
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Q: where does the cyclotomic trace K — TC come from?
Thm (A-M-G-R).
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Q: where does the cyclotomic trace K — TC come from?

Thm (A-M-G-R).

the unstable cyclotomic trace: for C a S-enriched oo-category,
max’ subgpd of C:=1C ~ [,,€ — (fsle)hw =: THHs(C)"V =: TCh(e)

input: the fiber bundle st 1 DO is invariant for the W-action on S*
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Q: where does the cyclotomic trace K — TC come from?
Thm (A-M-G-R).

the unstable cyclotomic trace: for C a S-enriched oo-category,

max’ subgpd of C:=1C ~ [,,€ — (fsle)hw =: THHs(C)"V =: TCh(e)

input: the fiber bundle st 1 DO is invariant for the W-action on S*

linearization

the cyclotomic trace: for C a stable oo-category,

K(€) — THH(€)"@< =: TC(C)
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Q: where does the cyclotomic trace K — TC come from?
Thm (A-M-G-R).

the unstable cyclotomic trace: for C a S-enriched oo-category,

max’ subgpd of C:=1C ~ [,,€ — (fsle)hw =: THHs(C)"V =: TCh(e)

input: the fiber bundle st 1 DO is invariant for the W-action on S*

linearization

the cyclotomic trace: for C a stable oo-category,
K(€) — THH(C)™e =: TC(e)

input: K-theory is the universal additive invariant of stable co-categories (Blumberg—Gepner—Tabuada)
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