The geometry of the cyclotomic trace

Aaron Mazel-Gee

with David Ayala and Nick Rozenblyum

1 A naive approach to genuine G-spectra and cyclotomic spectra (arXiv:1710.06416)
2 Factorization homology of enriched ∞-categories (arXiv:1710.06414)
3 The geometry of the cyclotomic trace (arXiv:1710.06409)
a scheme (derived) \(K(X) = \) algebraic K-theory of \(X \) \(\approx \) group-completion of \(\text{VBdl}(X) / \text{iso}., \oplus \) [hard to compute!]

\(\text{THH}(X) = \) topological Hochschild homology of \(X \) \(\approx \int S^1 \text{Perf} X \approx O(L_X) \), functions on the free loopspace of \(X \) [easier to compute]

the Dennis trace map \(K(X) \to \text{THH}(X) \)

\[
\begin{pmatrix}
S^1 \gamma \to X \to \text{trace of monodromy of } E\mid_\gamma
\end{pmatrix}
\]
X a scheme (derived)
X a scheme (derived)

$K(X) = \textit{algebraic } K\textit{-theory}$ of X
X a scheme (derived)

$K(X) = \textit{algebraic } K\text{-theory} \text{ of } X$

$:= K(\text{Perf}_X)$
\(X \) a scheme (derived)

\[
K(X) = \text{algebraic K-theory of } X
\]

\[
:= K(\text{Perf}_X)
\]

\[
\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus)
\]

\[\text{THH}(X) = \text{topological Hochschild homology of } X
\]

\[\approx \int S^1 \text{Perf}_X \]

\[\approx O(L_X), \text{ functions on the free loopspace of } X\]

The geometry of the cyclotomic trace
X a scheme (derived)

\[K(X) = \textit{algebraic K-theory} \text{ of } X \]

\[:= K(\text{Perf}_X) \]

\[\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus) \]

[hard to compute!]

\[\text{Dennis trace map} \]

\[K(X) \stackrel{\text{Dennis}}{\longrightarrow} \text{THH}(X) \]

\[(E \downarrow X) \mapsto \text{trace of monodromy of } E|_\gamma \]

Aaron Mazel-Gee

The geometry of the cyclotomic trace
X a scheme (derived)

\[K(X) = \text{algebraic } K\text{-theory of } X \]
\[:= K(\text{Perf}_X) \]
\[\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus) \]

[hard to compute!]

\[\text{THH}(X) = \text{topological Hochschild homology of } X \]
X a scheme (derived)

$K(X) = \textit{algebraic K-theory of } X$

$\quad := K(\text{Perf}_X)$

$\quad \approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus)$

[hard to compute!]

$\text{THH}(X) = \textit{topological Hochschild homology of } X$

$\quad := \text{THH}(\text{Perf}_X)$
X a scheme (derived)

$K(X) = \textit{algebraic K-theory}$ of X

$:= K(\text{Perf}_X)$

$\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus)$

[hard to compute!]

$\text{THH}(X) = \textit{topological Hochschild homology}$ of X

$:= \text{THH}(\text{Perf}_X) := \int_{S^1} \text{Perf}_X$
X a scheme (derived)

$K(X) = \text{algebraic } K\text{-theory} \text{ of } X$

$\quad := K(\text{Perf}_X)$

$\quad \approx \text{group-completion of } (\text{VBdl}(X) / \text{iso.}, \oplus)$

[hard to compute!]

$THH(X) = \text{topological Hochschild homology} \text{ of } X$

$\quad := THH(\text{Perf}_X) := \int_{S^1} \text{Perf}_X$

$\quad \approx O(\mathcal{L}X), \text{ functions on the free loopspace of } X$
X a scheme (derived)

\[K(X) = \text{algebraic K-theory of } X \]
\[:= K(\text{Perf}_X) \]
\[\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus) \]

[hard to compute!]

\[\text{THH}(X) = \text{topological Hochschild homology of } X \]
\[:= \text{THH}(\text{Perf}_X) := \int_{S^1} \text{Perf}_X \]
\[\approx \mathcal{O}(\mathcal{L}X), \text{ functions on the free loop space of } X \]

[easier to compute]
X a scheme (derived)

$K(X) = \textit{algebraic K-theory} \text{ of } X$

\[
K(X) = K(\text{Perf}_X)
\]

\[
\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus)
\]

[hard to compute!]

$\text{THH}(X) = \textit{topological Hochschild homology} \text{ of } X$

\[
\text{THH}(X) = \text{THH}(\text{Perf}_X) := \int_{S^1} \text{Perf}_X
\]

\[
\approx \mathcal{O}(LX), \text{ functions on the free loop space of } X
\]

[easier to compute]

the \textit{Dennis trace} map

\[
K(X) \longrightarrow \text{THH}(X)
\]
X a scheme (derived)

$K(X) = \textit{algebraic K-theory}$ of X

$\quad := K(\text{Perf}_X)$

$\quad \approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus)$

[hard to compute!]

$\text{THH}(X) = \textit{topological Hochschild homology}$ of X

$\quad := \text{THH}(\text{Perf}_X) := \int_{S^1} \text{Perf}_X$

$\quad \approx \mathcal{O}(\mathcal{L}X)$, functions on the free loop space of X

[easier to compute]

the \textit{Dennis trace} map

$$K(X) \longrightarrow \text{THH}(X)$$

$$(E \downarrow X) \longmapsto \left(\begin{array}{c} \text{trace of monodromy of } E |_{\gamma} \end{array} \right)$$
X a scheme (derived)

$K(X) = \text{algebraic } K\text{-theory of } X$
\[:= K(\text{Perf}_X) \]
\[\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus) \]
[hard to compute!]

$\text{THH}(X) = \text{topological Hochschild homology of } X$
\[:= \text{THH}(\text{Perf}_X) := \int_{S^1} \text{Perf}_X \]
\[\approx \mathcal{O}(LX), \text{ functions on the free loopspace of } X \]
[easier to compute]

the \textbf{Dennis trace} map

\[K(X) \to \text{THH}(X) \]

\[(E \downarrow X) \mapsto \left((S^1 \xrightarrow{\gamma} X) \mapsto \right) \]

Aaron Mazel-Gee
The geometry of the cyclotomic trace
X a scheme (derived)

\[K(X) = \text{algebraic K-theory of } X \]
\[:= K(\text{Perf}_X) \]
\[\approx \text{group-completion of } (\text{VBdl}(X)/\text{iso.}, \oplus) \]

[hard to compute!]

\[\text{THH}(X) = \text{topological Hochschild homology of } X \]
\[:= \text{THH}(\text{Perf}_X) := \int_{S^1} \text{Perf}_X \]
\[\approx \mathcal{O}(\mathcal{L}X), \text{ functions on the free loopspace of } X \]

[easier to compute]

the \textit{Dennis trace} map

\[K(X) \rightarrow \text{THH}(X) \]
\[(E \downarrow X) \leftrightarrow \left((S^1 \to X) \leftrightarrow \text{trace of monodromy of } E|_\gamma \right) \]
a refinement:

\[K(X) \xrightarrow{\text{Dennis trace}} \text{THH}(X) \xrightarrow{\text{cyclotomic trace}} \text{TC}(X) \]
a refinement:

\[\text{K}(X) \xrightarrow{\text{Dennis trace}} \text{THH}(X) \]

\[\xrightarrow{\text{cyclotomic trace}} \text{TC}(X) \]

\[\text{TC}(X) = \text{topological cyclic homology} \text{ of } X \]
a refinement:

\[\text{K}(X) \xrightarrow{\text{Dennis trace}} \text{THH}(X) \]

\[\xrightarrow{\text{cyclotomic trace}} \text{TC}(X) \]

\[\text{TC}(X) = \textit{topological cyclic homology} \text{ of } X \]

\[\simeq??!!?? \]
a refinement:

\[\text{K}(X) \xrightarrow{\text{Dennis trace}} \text{THH}(X) \]

\[\text{cyclotomic trace} \]

\[\text{TC}(X) \]

\[\text{TC}(X) = \textit{topological cyclic homology} \text{ of } X \]

\[\approx \ldots ???!!?? \]

[computationally accessible, but conceptually mysterious]
why we care about TC

Thm (Goodwillie/\mathbb{Q} '86, McCarthy/\mathbb{Z} '97, Dundas/\mathbb{S} '97).
why we care about TC

Thm (Goodwillie/\(\mathbb{Q}\) ’86, McCarthy/\(\mathbb{Z}\) ’97, Dundas/\(\mathbb{S}\) ’97). The cyclotomic trace is “locally constant”:
why we care about TC

Thm (Goodwillie/\mathbb{Q} ’86, McCarthy/\mathbb{Z} ’97, Dundas/\mathbb{S} ’97). The cyclotomic trace is “locally constant”: for $\tilde{A} \to A$ a nilpotent extension of associative rings (or of connective ring spectra),
why we care about TC

Thm (Goodwillie/\mathbb{Q} ’86, McCarthy/\mathbb{Z} ’97, Dundas/\mathbb{S} ’97). The cyclotomic trace is “locally constant”: for $\tilde{A} \to A$ a nilpotent extension of associative rings (or of connective ring spectra),

$$
\begin{array}{ccc}
K(\tilde{A}) & \to & K(A) \\
\downarrow & & \downarrow \\
\text{TC}(\tilde{A}) & \to & \text{TC}(A)
\end{array}
$$

is a pullback.

"This is how people other than Quillen compute algebraic K-theory."
\sim A. Blumberg, algebraic K-theorist
why we care about TC

Thm (Goodwillie/\mathbb{Q} '86, McCarthy/\mathbb{Z} '97, Dundas/\mathbb{S} '97).
The cyclotomic trace is “locally constant”: for \tilde{\mathbb{A}} \to \mathbb{A} a nilpotent extension of associative rings (or of connective ring spectra),

\[
\begin{align*}
K(\tilde{\mathbb{A}}) & \longrightarrow K(\mathbb{A}) \\
\downarrow & \downarrow \\
TC(\tilde{\mathbb{A}}) & \longrightarrow TC(\mathbb{A})
\end{align*}
\]

is a pullback.

“This is how people other than Quillen compute algebraic K-theory.”

~ A. Blumberg, algebraic K-theorist
...but what is $\text{TC}(X)$, really?
...but what is $\text{TC}(X)$, really?

intermediate factorization through *negative cyclic homology*:

$$K(X) \rightarrow \text{TC}(X) \rightarrow \text{THC}^{-}(X) \rightarrow \text{THH}(X)$$
...but what is $\text{TC}(X)$, really?

Intermediate factorization through negative cyclic homology:

$$K(X) \to \text{TC}(X) \to \text{THC}^{-}(X) \to \text{THH}(X)$$

<table>
<thead>
<tr>
<th></th>
<th>differential algebra</th>
<th>derived algebraic geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{THH}(X)$</td>
<td>$\Omega^*_\text{dR}(X)$</td>
<td>functions on $\mathcal{L}X$</td>
</tr>
</tbody>
</table>
...but what *is* $\text{TC}(X)$, really?

Intermediate factorization through *negative cyclic homology*:

$$K(X) \longrightarrow \text{TC}(X) \longrightarrow \text{THC}^-(X) \longrightarrow \text{THH}(X)$$

<table>
<thead>
<tr>
<th>differential algebra</th>
<th>derived algebraic geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{THH}(X)$</td>
<td>$\Omega^*_{dR}(X)$</td>
</tr>
<tr>
<td>$\text{THC}^-(X)$</td>
<td></td>
</tr>
<tr>
<td>$:= \text{THH}(X)^{\text{hT}}$</td>
<td></td>
</tr>
</tbody>
</table>
...but what is $\text{TC}(X)$, really?

Intermediate factorization through *negative cyclic homology*:

$$
\mathcal{K}(X) \longrightarrow \text{TC}(X) \longrightarrow \text{THC}^-(X) \longrightarrow \text{THH}(X)
$$

<table>
<thead>
<tr>
<th>differential algebra</th>
<th>derived algebraic geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{THH}(X)$</td>
<td>$\Omega^*_\text{dR}(X)$</td>
</tr>
<tr>
<td>$\text{THC}^-(X)$</td>
<td>$\text{THH}(X)^{h\mathbb{T}}$</td>
</tr>
</tbody>
</table>

Here, $\mathcal{K}(X)$ is the K-hypothesis of X, $\text{TC}(X)$ is the Tate construction of X, $\text{THC}^-(X)$ is the negative cyclic homology of X, and $\text{THH}(X)$ is the topological Hochschild homology of X. The notation $\Omega^*_\text{dR}(X)$ refers to the de Rham cohomology of X, and $\text{H}^*_\text{dR}(X)$ refers to the de Rham cohomology of the inertia space $\mathcal{L}X$. $\mathcal{L}X$ denotes the inertia stack of X. The $h\mathbb{T}$ notation indicates the h-completion of $\text{THH}(X)$ with respect to the Tate cohomology.
...but what is $TC(X)$, really?

Intermediate factorization through negative cyclic homology:

$$K(X) \to TC(X) \to THC^-(X) \to THH(X)$$

<table>
<thead>
<tr>
<th>differential algebra</th>
<th>derived algebraic geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$THH(X)$</td>
<td>$\Omega^*_{dR}(X)$</td>
</tr>
<tr>
<td>$THC^-(X) := THH(X)^{h\mathbb{T}}$</td>
<td>$H^*_{dR}(X)$</td>
</tr>
</tbody>
</table>
...but what *is* $\text{TC}(X)$, really?

Intermediate factorization through *negative cyclic homology*:

$$K(X) \longrightarrow \text{TC}(X) \longrightarrow \text{THC}^{-}(X) \longrightarrow \text{THH}(X)$$

<table>
<thead>
<tr>
<th>differential algebra</th>
<th>derived algebraic geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{THH}(X)$</td>
<td>$\Omega^*_{\mathrm{dR}}(X)$</td>
</tr>
<tr>
<td>$\text{THC}^{-}(X)$</td>
<td>$H^*_{\mathrm{dR}}(X)$</td>
</tr>
<tr>
<td>$\text{TC}(X)$</td>
<td>$\text{THH}(X)^{h\mathbb{T}}$</td>
</tr>
</tbody>
</table>

Aaron Mazel-Gee

The geometry of the cyclotomic trace
...but what is $\text{TC}(X)$, really?

intermediate factorization through *negative cyclic homology*:

\[K(X) \longrightarrow \text{TC}(X) \longrightarrow \text{THC}^-(X) \longrightarrow \text{THH}(X) \]

<table>
<thead>
<tr>
<th>differential algebra</th>
<th>derived algebraic geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{THH}(X)$</td>
<td>$\Omega^*_{dR}(X)$</td>
</tr>
<tr>
<td>$\text{THC}^-(X)$:= $\text{THH}(X)^{h\mathbb{T}}$</td>
<td>$H^*_{dR}(X)$</td>
</tr>
<tr>
<td>$\text{TC}(X)$:= $\text{THH}(X)^{h_{\text{Cyc}}}$</td>
<td>$???^*_{dR}(X)$</td>
</tr>
</tbody>
</table>

Aaron Mazel-Gee

The geometry of the cyclotomic trace
...but what *is* $\text{TC}(X)$, really?

Intermediate factorization through *negative cyclic homology*:

$$K(X) \rightarrow \text{TC}(X) \rightarrow \text{THC}^{-}(X) \rightarrow \text{THH}(X)$$

<table>
<thead>
<tr>
<th></th>
<th>differential algebra</th>
<th>derived algebraic geometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{THH}(X)$</td>
<td>$\Omega^*_dR(X)$</td>
<td>functions on $\mathcal{L}X$</td>
</tr>
<tr>
<td>$\text{THC}^{-}(X) := \text{THH}(X)^{h\mathbb{T}}$</td>
<td>$H^*_dR(X)$</td>
<td>\mathbb{T}-invariant functions on $\mathcal{L}X$</td>
</tr>
<tr>
<td>$\text{TC}(X) := \text{THH}(X)^{h\text{Cyc}}$</td>
<td>$??*_dR(X)$</td>
<td>TODAY</td>
</tr>
</tbody>
</table>
constructions of TC
constructions of TC

original definition (Bökstedt–Hsiang–Madsen '93):

- Uses genuine-equivariant stable homotopy theory useful (e.g. equivariant Poincaré duality).
- Not conceptual (no DAG interpretation known).
- Used opaque point-set manipulations based on vague analogy with free loopspaces.

firmer categorical footing (Blumberg–Mandell '13):
- Define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze '17?):
- Removes genuine-equivariance.
- Restricts to connective ring spectra.

This talk, inspired by Nikolaus–Scholze:
- Applies to any spectrally-enriched ∞-category.
- Uses factorization homology to keep track of symmetries.
- Admits direct interpretation in DAG via L_X.
- Suggests higher-dim generalizations (\Rightarrow “higher K-theory”).

Aaron Mazel-Gee
The geometry of the cyclotomic trace
constructions of TC

original definition (Bökstedt–Hsiang–Madsen '93):
 • uses genuine-equivariant stable homotopy theory

but not conceptual (no DAG interpretation known)

used opaque point-set manipulations based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell '13):
 define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze '17?):
 removes genuine-equivariance
 restricts to connective ring spectra

this talk, inspired by Nikolaus–Scholze:
 applies to any spectrally-enriched ∞-category
 uses factorization homology to keep track of symmetries
 admits direct interpretation in DAG via \(L_X \)
 suggests higher-dim generalizations (\(\Rightarrow \) “higher K-theory”)
constructions of TC

original definition (Bökstedt–Hsiang–Madsen '93):
 - uses *genuine-equivariant* stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...

but not conceptual (no DAG interpretation known)

used opaque point-set manipulations
 based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell '13):
 define homotopy theory of "cyclotomic spectra"

more recent definition (Nikolaus–Scholze '17?):
 - removes genuine-equivariance
 - restricts to connective ring spectra

this talk, inspired by Nikolaus–Scholze:
 - applies to any spectrally-enriched ∞-category
 - uses factorization homology
to keep track of symmetries
 - admits direct interpretation in DAG via \(L^X \)
suggests higher-dim generalizations (\(\Rightarrow \) "higher K-theory")
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
 - uses genuine-equivariant stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)

 firmer categorical footing (Blumberg–Mandell ’13):
 define homotopy theory of "cyclotomic spectra"

more recent definition (Nikolaus–Scholze ’17?):
 removes genuine-equivariance
 restricts to connective ring spectra

this talk, inspired by Nikolaus–Scholze:
 applies to any spectrally-enriched ∞-category
 uses factorization homology to keep track of symmetries
 admits direct interpretation in DAG via \(L_X \)

suggests higher-dim generalizations (⇝ "higher K-theory")
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
- uses genuine-equivariant stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
- used opaque point-set manipulations

more recent definition (Nikolaus–Scholze ’17?):
- removes genuine-equivariance
- restricts to connective ring spectra

this talk, inspired by Nikolaus–Scholze:
- applies to any spectrally-enriched ∞-category
- uses factorization homology to keep track of symmetries
- admits direct interpretation in DAG via L_X
- suggests higher-dim generalizations (⇝ "higher K-theory")
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):

- uses genuine-equivariant stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
- used opaque point-set manipulations
- based on vague analogy with free loopspaces
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
 - uses genuine-equivariant stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
 - used opaque point-set manipulations
 - based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
 - define homotopy theory of “cyclotomic spectra”
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
- uses *genuine-equivariant* stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
- used opaque point-set manipulations
- based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
- define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
- uses factorization homology to keep track of symmetries
- admits direct interpretation in DAG via L_X

suggests higher-dim generalizations (\Rightarrow “higher K-theory”)
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
- uses *genuine-equivariant* stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
- used opaque point-set manipulations
- based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
- define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
- removes genuine-equivariance
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
- uses *genuine-equivariant* stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
- used opaque point-set manipulations
- based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
- define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
- removes genuine-equivariance
- restricts to *connective* ring spectra

Aaron Mazel-Gee The geometry of the cyclotomic trace
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
- uses genuine-equivariant stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
- used opaque point-set manipulations
- based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
- define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
- removes genuine-equivariance
- restricts to connective ring spectra

this talk, inspired by Nikolaus–Scholze:
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
 • uses genuine-equivariant stable homotopy theory
 • useful (e.g. equivariant Poincaré duality)...
 • but not conceptual (no DAG interpretation known)
 • used opaque point-set manipulations
 • based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
 • define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
 • removes genuine-equivariance
 • restricts to connective ring spectra

this talk, inspired by Nikolaus–Scholze:
 • applies to any spectrally-enriched ∞-category
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
 - uses genuine-equivariant stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
 - used opaque point-set manipulations
 - based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
 - define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
 - removes genuine-equivariance
 - restricts to connective ring spectra

this talk, inspired by Nikolaus–Scholze:
 - applies to any spectrally-enriched ∞-category
 - uses factorization homology to keep track of symmetries
constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
- uses *genuine-equivariant* stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
- used opaque point-set manipulations
- based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
- define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
- removes genuine-equivariance
- restricts to *connective* ring spectra

this talk, inspired by Nikolaus–Scholze:
- applies to any spectrally-enriched ∞-category
- uses *factorization homology* to keep track of symmetries
- admits direct interpretation in DAG via L_X
The geometry of the cyclotomic trace

constructions of TC

original definition (Bökstedt–Hsiang–Madsen ’93):
 - uses *genuine-equivariant* stable homotopy theory
 - useful (e.g. equivariant Poincaré duality)...
 - but not conceptual (no DAG interpretation known)
 - used opaque point-set manipulations
 - based on vague analogy with free loopspaces

firmer categorical footing (Blumberg–Mandell ’13):
 - define homotopy theory of “cyclotomic spectra”

more recent definition (Nikolaus–Scholze ’17?):
 - removes genuine-equivariance
 - restricts to *connective* ring spectra

this talk, inspired by Nikolaus–Scholze:
 - applies to any spectrally-enriched ∞-category
 - uses *factorization homology* to keep track of symmetries
 - admits direct interpretation in DAG via LX
 - suggests higher-dim generalizations (⇝ “higher K-theory”)
overview
overview

\[\text{Sp} \xleftarrow{\text{triv}} \text{Cyc}(\text{Sp}) \xrightarrow{\downarrow} \text{TC}(X) \xleftarrow{\cup} \text{THH}(X) \]
overview

\[
\begin{align*}
\text{Sp} & \xrightarrow{\text{triv}} \text{Cyc(Sp)} \\
\cup & \quad \cup \\
\text{TC}(X) & \leftarrow \text{THH}(X)
\end{align*}
\]

\[
\text{TC}(X) := \text{fixedpoints of cyclotomic structure on THH}(X)
\]

\[\rightsquigarrow \text{built by “imposing conditions” on functions on } \mathcal{L}X\]
overview

\[
\begin{align*}
\text{Sp} & \xrightarrow{\text{triv}} \text{Cyc(Sp)} \\
\cup & \xrightarrow{(-)^{h\text{Cyc}}} \\
\text{TC}(X) & \leftarrow \text{THH}(X)
\end{align*}
\]

\[\text{TC}(X) := \text{fixedpoints of cyclotomic structure on } \text{THH}(X)\]

\[\Rightarrow \text{built by “imposing conditions” on functions on } \mathcal{L}X\]

main idea: \(\text{TC}(X) \approx \text{functions on } \mathcal{L}X \text{ that are...}\)
overview

\[
\begin{array}{c}
\text{Sp} \quad \xrightarrow{\text{triv}} \quad \downarrow \quad \xrightarrow{(-)^{h\text{Cyc}}} \quad \text{Cyc(Sp)} \\
\cup \quad \quad \quad \quad \quad \quad \cup \\
\text{TC}(X) \quad \xleftarrow{\quad \quad \quad \quad \quad \quad} \quad \text{THH}(X)
\end{array}
\]

\(\text{TC}(X) := \) fixedpoints of \textit{cyclo\-tomic structure} on \(\text{THH}(X)\)

\(\leadsto \) built by “imposing conditions” on functions on \(\mathcal{L}X\)

main idea: \(\text{TC}(X) \approx \) functions on \(\mathcal{L}X\) that are...

- invariant under the \(\mathbb{T}\)-action on \(\mathcal{L}X\);
overview

\[\text{Sp} \quad \xrightarrow{\text{triv}} \quad \text{Cyc(Sp)} \quad \sqcup \quad \xrightarrow{(-)^{h\text{Cyc}}} \quad \sqcup \]

\[\text{TC}(X) \quad \sqcup \quad \text{THH}(X) \]

\[\text{TC}(X) := \text{fixedpoints of cyclotomic structure on } \text{THH}(X) \]

\[\leadsto \text{built by “imposing conditions” on functions on } \mathcal{L}X \]

main idea: \(\text{TC}(X) \approx \text{functions on } \mathcal{L}X \) that are...

- invariant under the \(\mathbb{T} \)-action on \(\mathcal{L}X \);
- “sensitive” to the relationship between \(S^1 \xrightarrow{\gamma} X \) and \(S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X \).
overview

\[
\begin{align*}
\text{Sp} \quad & \xrightarrow{\text{triv}} \quad \text{Cyc}(\text{Sp}) \\
\cup \quad & \quad (_)^{h\text{Cyc}} \quad \cup \\
\text{TC}(X) \quad & \leftarrow \quad \text{THH}(X)
\end{align*}
\]

\(\text{TC}(X) := \text{fixedpoints of cyclotomic structure on THH}(X)\)

\(\leadsto \text{built by “imposing conditions” on functions on } \mathcal{L}X\)

main idea: \(\text{TC}(X) \approx \text{functions on } \mathcal{L}X \text{ that are...}\)

- invariant under the \(\mathbb{T}\)-action on \(\mathcal{L}X\);
- “sensitive” to the relationship between \(S^1 \xrightarrow{\gamma} X\) and \(S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X\).

\(\mathbb{T}\)-invariance is easy, but what does “sensitive” mean?
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{f} S^1 \xrightarrow{\gamma} X$
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 1: $r = 2$, $M = \text{diag}(m_1, \ldots, m_n) \in M_{n \times n}(R)$
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 1: $r = 2$, $M = \text{diag}(m_1, \ldots, m_n) \in M_{n \times n}(R)$

$$\text{tr}(M)^2 = \sum_{i,j} m_i \cdot m_j,$$
relationship between $S^1 \to X$ and $S^1 \to S^1 \to X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 1: $r = 2$, $M = \text{diag}(m_1, \ldots, m_n) \in M_{n \times n}(R)$

$$\text{tr}(M)^2 = \sum_{i,j} m_i \cdot m_j , \quad \text{tr}(M^2) = \sum_k m_k \cdot m_k$$
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 1: $r = 2$, $M = \text{diag}(m_1, \ldots, m_n) \in M_{n \times n}(R)$

\[\text{tr}(M)^2 = \sum_{i,j} m_i \cdot m_j, \quad \text{tr}(M^2) = \sum_k m_k \cdot m_k \]

- both \textit{cyclically invariant}, i.e. lie in the fixedpoints $(R \otimes R)^{C_2}$
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 1: $r = 2$, $M = \text{diag}(m_1, \ldots, m_n) \in M_{n \times n}(R)$

$$\text{tr}(M)^2 = \sum_{i,j} m_i \cdot m_j \quad , \quad \text{tr}(M^2) = \sum_{k} m_k \cdot m_k$$

- both *cyclically invariant*, i.e. lie in the fixedpoints $(R \otimes R)^C_2$
- difference is *norms*:
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 1: $r = 2$, $M = \text{diag}(m_1, \ldots, m_n) \in M_{n \times n}(R)$

$$\text{tr}(M)^2 = \sum_{i,j} m_i \cdot m_j, \quad \text{tr}(M^2) = \sum_k m_k \cdot m_k$$

- both *cyclically invariant*, i.e. lie in the fixedpoints $(R \otimes R)^{C_2}$
- difference is *norms*: image of $\sum_{i<j}[m_i \otimes m_j]$ under

$$(R \otimes R)^{C_2} \xrightarrow{Nm} (R \otimes R)^{C_2}$$

$$[x \otimes y] \mapsto \sum_{\sigma \in C_2} \sigma(x \otimes y)$$
relationship between $S^1 \overset{\gamma}{\to} X$ and $S^1 \overset{r}{\to} S^1 \overset{\gamma}{\to} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 1: $r = 2$, $M = \text{diag}(m_1, \ldots, m_n) \in M_{n \times n}(R)$

$$\text{tr}(M)^2 = \sum_{i,j} m_i \cdot m_j, \quad \text{tr}(M^2) = \sum_k m_k \cdot m_k$$

- both *cyclically invariant*, i.e. lie in the fixedpoints $(R \otimes R)^{C_2}$
- difference is *norms*: image of $\sum_{i<j}[m_i \otimes m_j]$ under

$$\begin{align*}
(R \otimes R)^{C_2} &\xrightarrow{Nm} (R \otimes R)^{C_2} \\
[x \otimes y] &\mapsto \sum_{\sigma \in C_2} \sigma(x \otimes y)
\end{align*}$$

\sim become equal in the *Tate construction*, the cofiber

$$\begin{array}{c}
(R \otimes R)^{C_2} \xrightarrow{Nm} (R \otimes R)^{C_2} \longrightarrow (R \otimes R)^{tC_2}
\end{array}$$
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 2:
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 2: $M = \text{diag}(m_1, m_2)$, $r \in \mathbb{N}^\times$ arbitrary
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 2: $M = \text{diag}(m_1, m_2)$, $r \in \mathbb{N}^\times$ arbitrary

now, difference between

$$\text{tr}(M)^r = (m_1 + m_2)^r, \quad \text{tr}(M^r) = ((m_1)^r + (m_2)^r)$$

governed by binomial coefficients $\binom{r}{i}$ for $0 < i < r$
relationship between $S^1 \overset{\gamma}{\to} X$ and $S^1 \overset{r}{\to} S^1 \overset{\gamma}{\to} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 2: $M = \text{diag}(m_1, m_2), \ r \in \mathbb{N}^\times$ arbitrary

now, difference between

$$\text{tr}(M)^r = (m_1 + m_2)^r, \ \text{tr}(M^r) = ((m_1)^r + (m_2)^r)$$

governed by binomial coefficients $\binom{r}{i}$ for $0 < i < r$

fact: these are never coprime to r
relationship between $S^1 \xrightarrow{\gamma} X$ and $S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M^r)$?

Ex. 2: $M = \text{diag}(m_1, m_2)$, $r \in \mathbb{N}^\times$ arbitrary

now, difference between

$$\text{tr}(M)^r = (m_1 + m_2)^r, \quad \text{tr}(M^r) = ((m_1)^r + (m_2)^r)$$

governed by binomial coefficients $\binom{r}{i}$ for $0 < i < r$

fact: these are never coprime to r

\leadsto quotient $(R^{\otimes r})^{C_r}$ by norms from all proper subgroups of C_r
relationship between $S^1 \gamma X$ and $S^1 \gamma S^1 \gamma X$

Q.: M an $n \times n$ matrix, compare $\text{tr}(M)^r$ and $\text{tr}(M'^r)$?

Ex. 2: $M = \text{diag}(m_1, m_2)$, $r \in \mathbb{N}^\times$ arbitrary

now, difference between

$$\text{tr}(M)^r = (m_1 + m_2)^r, \quad \text{tr}(M'^r) = ((m_1)^r + (m_2)^r)$$

governed by binomial coefficients $\binom{r}{i}$ for $0 < i < r$

fact: these are never coprime to r

\hookrightarrow quotient $(R^\otimes r)^C_r$ by norms from all proper subgroups of C_r

\hookrightarrow $\text{tr}(M'^r) \equiv \text{tr}(M)^r$ in the generalized Tate construction $(R^\otimes r)^{\tau C_r}$
relationship between \(S^1 \xrightarrow{\gamma} X \) and \(S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X \)

Q.: \(M \) an \(n \times n \) matrix, compare \(\text{tr}(M)^r \) and \(\text{tr}(M^r) \)?

Ex. 2: \(M = \text{diag}(m_1, m_2) \), \(r \in \mathbb{N}^\times \) arbitrary

now, difference between

\[
\text{tr}(M)^r = (m_1 + m_2)^r, \quad \text{tr}(M^r) = ((m_1)^r + (m_2)^r)
\]
governed by binomial coefficients \(\binom{r}{i} \) for \(0 < i < r \)

fact: these are never coprime to \(r \)

\(\leadsto \) quotient \((R \otimes r)^{Cr}\) by norms from all proper subgroups of \(Cr \)

\(\leadsto \) \(\text{tr}(M^r) \equiv \text{tr}(M)^r \) in the **generalized** Tate construction \((R \otimes r)^{\tau Cr}\)

\(\star \) for \(C \) a spectrally enriched \(\infty \)-category, a covering map

\[
S^1_b \xleftarrow{r} S^1_a
\]
of oriented circles induces a **cyclotomic structure map**

\[
\text{THH}(C) := \int_{S^1_b} C \rightarrow \left(\int_{S^1_a} C \right)^{\tau Cr} =: \text{THH}(C)^{\tau Cr}
\]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\mathcal{S}) \cong \lim_{r \to \infty} \text{lax}(\mathcal{S}_{h T}) \]

\[\mathcal{S}_{h T} := \text{Fun}(B_T, \mathcal{S}) \]

\[\text{lax} \circ \tau \]

\[\tau_{N \times r} \]

\[\sigma_{r \to \tau C} \]

\[\text{slogan: } \tau C(X) \text{ is built from } \text{THH}(X) \cong \mathcal{O}(L X) \text{ by selecting just those functions: } \]

\[\text{that are } T \text{-invariant; } \]

\[\text{whose values on } S^1 \gamma \to X \text{ determine their values on } S^1 r \to S^1 \gamma \to X \text{ "to the greatest extent possible", subject to all possible coherences between these determinations.} \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \cong \text{Sp}^hT := \text{Fun}(B\mathbb{T}, \text{Sp}) \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \text{Sp}^{hT} \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \left(\text{Sp}^h_T \overset{\tau}{\otimes} \mathbb{N}^\times \right) \]
Theorem 1 (A & M-G & R)

$$\text{Cyc}(\text{Sp}) \simeq \left(\text{Sp}^h T \overset{\text{lax}}{\leftarrow} T \otimes \mathbb{N}^\times \right)$$
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim \left(\text{Sp}^{h_T} \overset{\text{lax}}{\underset{\tau}{\cap}} \mathbb{N}^\times \right) \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^{r.\text{lax}} \left(\text{Sp}^h_{\mathbb{T}} \underset{\tau}{\otimes} \mathbb{N}^\times \right) \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^{r.lax} \left(\text{Sp}^h \mathbb{T} \xleftarrow{lax} \mathbb{N}^X \right). \]

A slogan: $\text{TC}(X)$ is built from $\text{THH}(X) \approx \mathcal{O}(L_X)$ by selecting just those functions: that are T-invariant; whose values on $S^1 \gamma \to X$ determine their values on $S^1 r \to S^1 \gamma \to X$ "to the greatest extent possible", subject to all possible coherences between these determinations.
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \cong \lim^{r \cdot \text{lax}} \left(\text{Sp}^\text{hT} \, \text{lax} \, \tau \, \mathbb{N}^\times \right). \]

\(\star \) an object of \(\lim^{r \cdot \text{lax}} \) is given by \(T \in \text{Sp}^\text{hT} \) equipped with:

\(\star \cdot \) slogan: \(\text{TC}(X) \) is built from \(\text{THH}(X) \approx O(L_X) \) by selecting just those functions:

- that are \(T \)-invariant;
- whose values on \(S_1 \stackrel{\gamma}{\to} X \) determine their values on \(S_1 \stackrel{r}{\to} S_1 \stackrel{\gamma}{\to} X \) "to the greatest extent possible," subject to all possible coherences between these determinations.

Aaron Mazel-Gee
The geometry of the cyclotomic trace
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^{r.\text{lax}} \left(\text{Sp}^{hT} \underset{\tau}{\wedge} N^\times \right). \]

★ an object of \(\lim^{r.\text{lax}} \) is given by \(T \in \text{Sp}^{hT} \) equipped with:

- for each \(r \in N^\times \),

[bullet points and continuation]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^{r.lax} \left(\text{Sp}^{h\mathbb{T}} \circlearrowleft_{\tau} \mathbb{N}^{\times} \right). \]

\[\star \text{ an object of } \lim^{r.lax} \text{ is given by } T \in \text{Sp}^{h\mathbb{T}} \text{ equipped with:} \]

- for each \(r \in \mathbb{N}^{\times} \), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T^{\tau C_r} \);
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \cong \lim^{r,lax} \left(\text{Sp}^h\mathbb{T} \vee_{\tau} \mathbb{N}^\times \right). \]

* an object of \(\lim^{r,lax} \) is given by \(T \in \text{Sp}^h\mathbb{T} \) equipped with:
 - for each \(r \in \mathbb{N}^\times \), a cyclotomic structure map \(T \overset{\sigma_r}{\to} T\tau C_r \);
 - for each \(r, s \in \mathbb{N}^\times \),...
Theorem 1 (A & M-G & R)

\[
\text{Cyc}(\text{Sp}) \simeq \lim^{r, \text{lax}} \left(\text{Sp}^h \mathbb{T} \underset{\tau}{\vee} \mathbb{N}^\times \right).
\]

\(\star\) an object of \(\lim^{r, \text{lax}}\) is given by \(T \in \text{Sp}^h \mathbb{T}\) equipped with:

- for each \(r \in \mathbb{N}^\times\), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T\tau C_r\);
- for each \(r, s \in \mathbb{N}^\times\), the data of a commutative square

\[
\begin{array}{ccc}
T & \xrightarrow{\sigma_r} & T\tau C_r \\
\downarrow{\sigma_{rs}} & & \downarrow{(\sigma_s)\tau C_r} \\
T\tau C_{rs} & \xrightarrow{\text{can.}} & (T\tau C_s)\tau C_r
\end{array}
\]

\(\star\) slogan: \(T\text{C})(X)\) is built from \(\text{THH}(X) \approx O(L_X)\) by selecting just those functions:

- that are \(T\)-invariant;
- whose values on \(S^1_\gamma \to X\) determine their values on \(S^1_r \to S^1_\gamma \to X\) "to the greatest extent possible", subject to all possible coherences between these determinations.
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^{r.lax} \left(\text{Sp}^{h\mathbb{T}} \text{lax}_{\tau} \mathbb{N}^{\times} \right). \]

* an object of \(\lim^{r.lax} \) is given by \(T \in \text{Sp}^{h\mathbb{T}} \) equipped with:
 - for each \(r \in \mathbb{N}^{\times} \), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T^{\tau C_r} \);
 - for each \(r, s \in \mathbb{N}^{\times} \), the data of a commutative square
 \[
 \begin{array}{ccc}
 T & \xrightarrow{\sigma_r} & T^{\tau C_r} \\
 \downarrow{\sigma_{rs}} & & \downarrow{(\sigma_s)^{\tau C_r}} \\
 T^{\tau C_{rs}} & \xrightarrow{\text{can.}} & (T^{\tau C_s})^{\tau C_r}
 \end{array}
 \]
 - for each \(r_1, \ldots, r_n \in \mathbb{N}^{\times} \),
Theorem 1 (A & M-G & R)

$$\text{Cyc}(\text{Sp}) \simeq \lim_{r, \text{lax}} \left(\text{Sp}^{h\mathbb{T}} \underset{\tau}{\left(\bigwedge_{\mathbb{N}^\times}\right)} \right).$$

an object of \(\lim_{r, \text{lax}}\) is given by \(T \in \text{Sp}^{h\mathbb{T}}\) equipped with:

- for each \(r \in \mathbb{N}^\times\), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T^\tau C_r\);
- for each \(r, s \in \mathbb{N}^\times\), the data of a commutative square

\[
\begin{array}{ccc}
T & \xrightarrow{\sigma_r} & T^\tau C_r \\
\downarrow{\sigma_{rs}} & & \downarrow{(\sigma_s)^\tau C_r} \\
T^\tau C_{rs} & \xrightarrow{\text{can.}} & (T^\tau C_s)^\tau C_r
\end{array}
\]

- for each \(r_1, \ldots, r_n \in \mathbb{N}^\times\), the data of a commutative \(n\)-cube...
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \cong \lim^{r, \text{lax}} \left(\text{Sp}^{h \mathbb{T}} \Leftrightarrow \text{lax} \bigtriangleup_{\tau} \mathbb{N}^{\times} \right). \]

* an object of \(\lim^{r, \text{lax}} \) is given by \(T \in \text{Sp}^{h \mathbb{T}} \) equipped with:
 - for each \(r \in \mathbb{N}^{\times} \), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T\tau C_r \);
 - for each \(r, s \in \mathbb{N}^{\times} \), the data of a commutative square

\[
\begin{array}{ccc}
T & \xrightarrow{\sigma_r} & T\tau C_r \\
\downarrow{\sigma_{rs}} & & \downarrow{(\sigma_s)^{\tau C_r}} \\
T\tau C_{rs} & \xrightarrow{\sim\text{ can.}} & (T\tau C_s)^{\tau C_r}
\end{array}
\]

for each \(r_1, \ldots, r_n \in \mathbb{N}^{\times} \), the data of a commutative \(n \)-cube...

Thm. [Nikolaus–Scholze]
for \(T \) connective and \(r = s = p \) prime
Cor.: suff to specify just \(\sigma_p \)
(since \(\sigma_{pn} = (\sigma_p)^{on} \), and \(n \)-cubes canonically commute \(\forall \ n \geq 2 \))
Theorem 1 (A & M-G & R)

\[
\text{Cyc} (\text{Sp}) \simeq \lim_{r,\text{lax}} \left(\text{Sp}^h \underbrace{\vdash}_{\tau} \mathbb{N} \right).
\]

- An object of \(\lim_{r,\text{lax}} \) is given by \(T \in \text{Sp}^h \) equipped with:
 - For each \(r \in \mathbb{N}^\times \), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T \tau \mathcal{C}_r \);
 - For each \(r, s \in \mathbb{N}^\times \), the data of a commutative square
 \[
 \begin{array}{ccc}
 T & \xrightarrow{\sigma_r} & T \tau \mathcal{C}_r \\
 \sigma_{rs} \downarrow & & \downarrow (\sigma_s) \tau \mathcal{C}_r \\
 T \tau \mathcal{C}_{rs} & \overset{\sim}{\xrightarrow{\text{can.}}} & (T \tau \mathcal{C}_s) \tau \mathcal{C}_r
 \end{array}
 \]
 - For each \(r_1, \ldots, r_n \in \mathbb{N}^\times \), the data of a commutative \(n \)-cube...

- Slogan: \(\text{TC}(X) \) is built from \(\text{THH}(X) \approx \mathcal{O}(LX) \) by selecting just those functions:

Thm. [Nikolaus–Scholze]
for \(T \) connective and \(r = s = p \) prime
Cor.: suff to specify just \(\sigma_p \)
(since \(\sigma_p^n = (\sigma_p)^\circ n \), and \(n \)-cubes canonically commute \(\forall n \geq 2 \))
Theorem 1 (A & M-G & R)

\[
\text{Cyc}(\text{Sp}) \simeq \lim^{r,\text{lax}} \left(\text{Sp}^{h\mathbb{T}} \overset{\tau}{\rightleftarrows} N^\times \right).
\]

★ an object of \(\lim^{r,\text{lax}} \) is given by \(T \in \text{Sp}^{h\mathbb{T}} \) equipped with:

- for each \(r \in N^\times \), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T^{\tau C_r} \);
- for each \(r, s \in N^\times \), the data of a commutative square

\[
\begin{array}{ccc}
T & \xrightarrow{\sigma_r} & T^{\tau C_r} \\
\downarrow{\sigma_{rs}} & & \downarrow{(\sigma_s)^{\tau C_r}} \\
T^{\tau C_{rs}} & \xrightarrow{\sim \text{can.}} & (T^{\tau C_s})^{\tau C_r}
\end{array}
\]

- for each \(r_1, \ldots, r_n \in N^\times \), the data of a commutative \(n \)-cube...

★ slogan: \(TC(X) \) is built from \(\text{THH}(X) \approx O(\mathcal{L}X) \) by selecting just those functions:

- that are \(\mathbb{T} \)-invariant;

Thm. [Nikolaus–Scholze]
for \(T \) connective and \(r = s = p \) prime

Cor.: suff to specify just \(\sigma_p \)

(since \(\sigma_{pn} = (\sigma_p)^n \), and \(n \)-cubes canonically commute \(\forall n \geq 2 \))
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^{r.\text{lax}} \left(\text{Sp}^{h\mathbb{T}} \lax{\tau} \mathbb{N}^\times \right). \]

\[\star \text{ an object of } \lim^{r.\text{lax}} \text{ is given by } T \in \text{Sp}^{h\mathbb{T}} \text{ equipped with:} \]

\begin{itemize}
 \item for each \(r \in \mathbb{N}^\times \), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T\tau C_r \);
 \item for each \(r, s \in \mathbb{N}^\times \), the \textit{data} of a commutative square
\end{itemize}

\[\begin{array}{ccc}
 T & \xrightarrow{\sigma_r} & T\tau C_r \\
 \sigma_{rs} \downarrow & & \downarrow (\sigma_s)\tau C_r \\
 T\tau C_{rs} & \xrightarrow{\sim \text{can.}} & (T\tau C_s)\tau C_r
\end{array} \]

\[\star \text{ slogan: } TC(X) \text{ is built from } \text{THH}(X) \simeq \mathcal{O}(\mathcal{L}X) \text{ by selecting just those functions:} \]

\begin{itemize}
 \item that are \(\mathbb{T} \)-invariant;
 \item whose values on \(S^1 \xrightarrow{\gamma} X \) determine their values on \(S^1 \xrightarrow{r} S^1 \xrightarrow{\gamma} X \) “to the greatest extent possible”,
\end{itemize}

Thm. [Nikolaus–Scholze]
for \(T \) connective and \(r = s = p \) prime
Cor.: suff to specify just \(\sigma_p \)
(since \(\sigma_{pn} = (\sigma_p)^{\circ n} \), and \(n \)-cubes canonically commute \(\forall \ n \geq 2 \)
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \cong \lim_{r.\text{lax}} \left(\text{Sp}^{h\mathbb{T}} \overset{l.\text{lax}}{\underset{\tau}{\circlearrowright}} \mathbb{N}^\times \right). \]

\[\star \] an object of \(\lim_{r.\text{lax}} \) is given by \(T \in \text{Sp}^{h\mathbb{T}} \) equipped with:

- for each \(r \in \mathbb{N}^\times \), a cyclotomic structure map \(T \xrightarrow{\sigma_r} T^{\tau C_r} \);
- for each \(r, s \in \mathbb{N}^\times \), the data of a commutative square

\[
\begin{array}{ccc}
T & \xrightarrow{\sigma_r} & T^{\tau C_r} \\
\downarrow{\sigma_{rs}} & & \downarrow{(\sigma_s)^{\tau C_r}} \\
T^{\tau C_{rs}} & \xrightarrow{\sim_{\text{can.}}} & (T^{\tau C_s})^{\tau C_r}
\end{array}
\]

- for each \(r_1, \ldots, r_n \in \mathbb{N}^\times \), the data of a commutative \(n \)-cube...

\[\star \text{slogan: } \text{TC}(X) \text{ is built from } \text{THH}(X) \cong \mathcal{O}(\mathcal{L}X) \text{ by selecting just those functions:} \]

- that are \(\mathbb{T} \)-invariant;
- whose values on \(S^1 \xrightarrow{\gamma} X \) determine their values on \(S^1 \overset{r}{\to} S^1 \xrightarrow{\gamma} X \) “to the greatest extent possible”, subject to all possible coherences between these determinations.

Thm. [Nikolaus–Scholze] for \(T \) connective and \(r = s = p \) prime

Cor.: suff to specify just \(\sigma_p \)

(since \(\sigma_{pn} = (\sigma_p)^n \), and \(n \)-cubes canonically commute \(\forall n \geq 2 \)
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \cong \lim^{r.lax} \left(\text{Sp}^{h\tau} \lax \mathbb{N}^\times \right). \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^r.lax \left(\text{Sp}^h T \overset{1.lax}{\underset{\tau}{\circlearrowright}} \mathbb{N}^\times \right). \]

main input (inspired by Glasman & many others)...

\[\star \text{over } H \in P_G, \text{ functor is } \text{Sp}^G \Phi H \longrightarrow \text{Sp}^W(H). \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim^{r.lax} \left(\text{Sp}^{h\mathbb{T}} \overset{1.lax}{\underset{\tau}{\ltimes}} \mathbb{N}^\times \right). \]

main input (inspired by Glasman & many others)...

notation: \(G \) a compact Lie group, \(P_G \) its poset of closed subgroups under subconjugacy.

\[\star \text{ over } H \in P_G, \text{ functor is } \text{Sp}^G \Phi_H \rightarrow \text{Sp}^W(H) \rightarrow \text{Sp}^H(W) \]

\[\star \text{ a generalized recollement over } P_G; \text{ classical is over poset } [1] \]

\[\star \text{ hints at a DAG description of genuine } G \text{-spectra...} \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \cong \lim^r.lax \left(\text{Sp}^h T \lvert_{\tau} \mathbb{N}^\times \right) . \]

main input (inspired by Glasman & many others)...

notation: \(G \) a compact Lie group, \(P_G \) its poset of closed subgroups under subconjugacy.

Theorem 2 (A & M-G & R)

There's a canonical left-lax left \(P_G \)-module \(\text{Sp}^{gG} \), whose value on \(H \in P_G \) is \(\text{Sp}^{hW(H)} \), with

\[\text{Sp}^{gG} \cong \lim^r.lax \left(P_G \lvert_{\tau} \text{Sp}^{gG} \right) . \]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \varinjlim^{r.lax} \left(\text{Sp}^h \mathbb{T} \overset{\text{l.lax}}{\underset{\tau}{\bowtie}} \mathbb{N}^\times \right). \]

main input (inspired by Glasman & many others)...

notation: \(G \) a compact Lie group, \(P_G \) its poset of closed subgroups under subconjugacy.

Theorem 2 (A & M-G & R)

\textit{There's a canonical left-lax left} \(P_G \text{-module} \ \text{Sp}^{gG}, \ \text{whose value on} \ \ H \in P_G \ \text{is} \ \text{Sp}^{hW(H)}, \ \text{with} \)

\[\text{Sp}^{gG} \simeq \varinjlim^{r.lax} \left(P_G \overset{\text{l.lax}}{\underset{\tau}{\bowtie}} \text{Sp}^{gG} \right). \]

\(\star \) over \(H \in P_G \), functor is \(\text{Sp}^{gG} \xrightarrow{\Phi^H} \text{Sp}^{gW(H)} \xrightarrow{\text{fgt}} \text{Sp}^{hW(H)} \)
Theorem 1 (A & M-G & R)

\[\text{Cyc}(Sp) \simeq \lim_{r.lax} \left(\text{Sp}^{h_T \lact \tau} \N^\times \right). \]

main input (inspired by Glasman & many others)...

notation: \(G \) a compact Lie group, \(P_G \) its poset of closed subgroups under subconjugacy.

Theorem 2 (A & M-G & R)

There's a canonical left-lax left \(P_G \)-module \(\text{Sp}^{gG} \), whose value on \(H \in P_G \) is \(\text{Sp}^{hW(H)} \), with

\[\text{Sp}^{gG} \simeq \lim_{r.lax} \left(P_G \lact \text{Sp}^{gG} \right). \]

\(\star \) over \(H \in P_G \), functor is \(\text{Sp}^{gG} \xrightarrow{\Phi^H} \text{Sp}^{gW(H)} \xrightarrow{\text{fgt}} \text{Sp}^{hW(H)} \)

\(\star \) a \textit{generalized recollement} over \(P_G \); classical is over poset [1]
Theorem 1 (A & M-G & R)

\[\text{Cyc}(\text{Sp}) \simeq \lim_{r.lax} \left(\text{Sp}^{hT} \overset{\text{l.lax}}{\curvearrowright} \mathbb{N}^\times \right). \]

main input (inspired by Glasman & many others)...

notation: \(G \) a compact Lie group, \(P_G \) its poset of closed subgroups under subconjugacy.

Theorem 2 (A & M-G & R)

There’s a canonical left-lax left \(P_G \)-module \(\text{Sp}^gG \), whose value on \(H \in P_G \) is \(\text{Sp}^{hW(H)} \), with

\[\text{Sp}^gG \simeq \lim_{r.lax} \left(P_G \overset{\text{l.lax}}{\curvearrowright} \text{Sp}^gG \right). \]

\(\star \) over \(H \in P_G \), functor is \(\text{Sp}^gG \underbrace{}_{\Phi^H} \rightarrow \text{Sp}^{gW(H)} \rightarrow \text{Sp}^{hW(H)} \)

\(\star \) a \textit{generalized recollement} over \(P_G \); classical is over poset \([1]\)

\(\star \) hints at a DAG description of genuine \(G \)-spectra...
Q.: Where does the cyclotomic structure on THH come from?
Q.: Where does the cyclotomic structure on THH come from?

Theorem 3 (A & M-G & R)
Q.: Where does the cyclotomic structure on THH come from?

Theorem 3 (A & M-G & R)

1

diagonal package for spaces
Q.: Where does the cyclotomic structure on THH come from?

Theorem 3 (A & M-G & R)

1. \(\text{diagonal package for spaces} \rightarrow \text{Cat}(S) \rightarrow \text{Cyc}^h(S) \)

\(THH_S \rightarrow S \)
Q.: Where does the cyclotomic structure on THH come from?

Theorem 3 (A & M-G & R)

\[\text{diagonal package for spaces} \quad \xrightarrow{\sim} \quad \text{Cyc}^h(\mathcal{S}) \]

\[\text{Cat}(\mathcal{S}) \xrightarrow{\sim} \text{Cyc}^h(\mathcal{S}) \]

\[\text{THH}_S \xrightarrow{\text{fgt}} S \]

\[\text{Cyc}^h(\mathcal{S}) := \text{Fun}(B\mathcal{W}, \mathcal{S}) := \text{“unstable cyclotomic spaces”} \]

\[\mathcal{W} \cong T \times N^\times \text{ the “Witt monoid”} \]
Q.: Where does the cyclotomic structure on THH come from?

Theorem 3 (A & M-G & R)

1. **diagonal package** for spaces

\[\text{Cat}(S) \longrightarrow \text{Cyc}^h(S) \]

\[\text{THH}_S \longrightarrow S \]

\[\text{THH}_S \] is the “Witt monoid”

2. **diagonal package** for spaces

linearization (à la Goodwillie calculus)

Tate package for spectra
Q.: Where does the cyclotomic structure on THH come from?

Theorem 3 (A & M-G & R)

1. **diagonal package** for spaces

\[
\text{Cat}(\mathcal{S}) \longrightarrow \text{Cyc}^h(\mathcal{S})
\]

\[
\text{THH}_\mathcal{S} \downarrow \quad \overset{\text{fgt}}{\rightarrow} \quad S
\]

\[\text{Cyc}^h(\mathcal{S}) := \text{Fun}(B\mathbb{W}, \mathcal{S}) := \text{“unstable cyclotomic spaces”}\]

\[\mathbb{W} \cong T \times \mathbb{N} \times \text{the “Witt monoid”}\]

2. **diagonal package** for spaces

\[
\text{Cat}(\text{Sp}) \longrightarrow \text{Cyc}(\text{Sp})
\]

\[
\text{THH} \downarrow \quad \overset{\text{fgt}}{\rightarrow} \quad \text{Sp}
\]

linearization (à la Goodwillie calculus)

Tate package for spectra
Q.: Where does the cyclotomic structure on THH come from?

Theorem 3 (A & M-G & R)

1. \textit{diagonal package} for spaces

\[\text{Cat}(\mathcal{S}) \longrightarrow \text{Cyc}^h(\mathcal{S}) \]

\[\text{THH}_\mathcal{S} \rightarrow \mathcal{S} \]

\[\text{Cyc}^h(\mathcal{S}) := \text{Fun}(BW, \mathcal{S}) := \text{“unstable cyclotomic spaces”} \]

\[W \cong T \times N \times \text{the “Witt monoid”} \]

2. \textit{diagonal package} for spaces

\[\text{linearization (à la Goodwillie calculus)} \]

\[\text{Cyc}(\text{Sp}) := \text{cyclotomic spectra} \]

\[\text{Cat}(\text{Sp}) \longrightarrow \text{Cyc}(\text{Sp}) \]

\[\text{THH} \rightarrow \text{Sp} \]

\[\text{Tate package} for spectra \]

\[\text{Cyc}(\text{Sp}) := \text{cyclotomic spectra} \]
Q.: Where does the cyclotomic trace come from?
Q.: Where does the cyclotomic trace come from?

Theorem 4 (A & M-G & R)
Q.: Where does the cyclotomic trace come from?

Theorem 4 (A & M-G & R)

the unstable cyclotomic trace: for \mathcal{C} a \mathcal{S}-enriched ∞-category,

$$\iota \mathcal{C} \longrightarrow TC^h_\mathcal{S}(\mathcal{C}) := \text{THH}_\mathcal{S}(\mathcal{C})^{h_W}$$
Q.: Where does the cyclotomic trace come from?

Theorem 4 (A & M-G & R)

the **unstable cyclotomic trace**: for \mathcal{C} a S-enriched ∞-category,

$$\iota \mathcal{C} \longrightarrow TC^h_S(\mathcal{C}) := \text{THH}_S(\mathcal{C})^{h\mathbb{W}}$$

Linearization (à la Goodwillie calculus)

the **cyclotomic trace**: for \mathcal{C} a stable ∞-category,

$$K(\mathcal{C}) \longrightarrow TC(\mathcal{C}) := \text{THH}(\mathcal{C})^{h\text{Cyc}}$$