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6.0 You could’ve invented tmf .

We begin by providing some motivation for this entire seminar, in the process of which we’ll meet some of the
objects that we’ll be looking at more closely in this talk – informally at first, but then we’ll go back through the
relevant parts more carefully. We admit right up front that we’ll be ignoring the minor issue of periodification
throughout this introduction.

1. SHCfin is a tensored triangulated category, so we can talk about ideals and thick subcategories. We define
Spec(SHCfin) to be the space of thick triangulated prime ideals.1 Note that the kernel of any homology theory
is a thick ideal: it is thick by the long exact sequence, and it is an ideal because if X ∈ ker(E∗) then E∧X ' ∗
so E ∧ (X ∧ Y ) ' ∗ ∧ Y ' ∗ for any Y . This needn’t be prime, however, as e.g. stable homotopy illustrates.

2. By the nilpotence theorem of Devinatz-Hopkins-Smith, Spec(SHCfin) ∼= Spec(Z) ∧ (N0 ∪ {∞}).2
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· · ·

· · ·

· · ·

· · ·

Spec(Z)

N0 ∪ {∞}

Figure 1: Spec(SHCfin).

1This actually comes with the “opposite Zariski topology”: a basis of open sets is V (X) = {P : X ∈P}, and the sets D(X) = {P :
X /∈P} are closed. However, when we take our tensored triangulated category to be Kb(ProjR), the perfect complexes of R-modules,
we recover the space Spec(R); thus, this is a reasonable definition. And after all, SHCfin = Kb(ProjF1

)!
2Cf. Balmer’s Spectra, spectra, spectra – tensor triangular spectra versus Zariski spectra of endomorphism rings.
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• For every [(p)] ∈ Spec(Z) we have a tower of points Pn,(p) for 1 ≤ n ≤ ∞, and there is a generic point
P0 corresponding to [(0)] ∈ Spec(Z). These are defined by Pn,(p) = ker(K(n, p)∗), where K(n, p) is the

nth Morava K-theory at the prime p. (We could also say that P0 = P0,(p) for any prime p, since we
always have K(0, p) = HQ.)

• Pn,(p) = {Pm,(p) : n ≤ m ≤ ∞} (and P0 = Spec(SHCfin)), and these form a basis of closed sets.

• All closed sets are obtainable as the support of some function X ∈ SHCfin. In particular, supp(X) =
Spec(SHCfin) iff HQ∗X 6= 0. Otherwise, supp(X) =

⋃
p prime Ptype(X,p),(p), where the union is over

finitely many primes.

This is called the chromatic filtration of the (finite) stable homotopy category.

3. The Morava K-theories are complex-oriented spectra K(n) = K(n, p) for 0 ≤ n ≤ ∞. The edge cases are
K(0) = HQ, K(1) = KU/p, and K(∞) = HFp. For n ≥ 1, GK(n) = Hn = Hn,p, the height-n Honda formal

group over Fp. (If F is a formal group law over a field k of characteristic p, then [p]F (x) = uxp
n

+ h.o.t. (with
u 6= 0) for some n ≥ 1, called the height of F . This is an isomorphism invariant.3 We define Hn by saying
that [p]Hn(x) = xp

n

with x a p-typical coordinate. Hn is defined over Fp, but up to algebraic closure height
is a complete isomorphism invariant; thus, up to base change the Hn give all formal groups over Fp.
The Morava K-theories are of central importance in chromatic homotopy theory. In the sense given above,
they are the residue fields of Spec(SHCfin). Further, they are essentially all of the homology theories admitting
Künneth isomorphisms. In fact, for any X ∈ SHC, K(n) ∧ X ' ∨j ΣijK(n), and this admits no nontrivial
retracts – that is, K(n) is a field (i.e. all its modules are free) – and moreover, any field takes the form∨
j ΣijK(n) (as a spectrum). So, these are also the prime fields of SHC in the same sense that Q and the Fp

are the prime fields of ModZ.

However, as useful as the MoravaK-theories are for detecting information at the various points of Spec(SHCfin),
they do not tell us how to stitch that information back together.

4. In order to globalize in the chromatic direction, there are the complex-oriented Morava E-theories En = En,p
for 0 ≤ n < ∞.4 The edge cases are E0 = HQ and E1 = KU∧p . For n ≥ 1, GEn = H̃n = H̃n,p is a
universal deformation of Hn ⊗Fp Fpn into complete local rings over Fpn , which lives over the Lubin-Tate
deformation space LTn = LTn,p = Spf((En)0) ∼= Spf(Zp[ζpn−1][[u1, . . . , un−1]]).5 That is, if A is any complete
local ring with residue field A/mA admitting an inclusion i : Fpn → A/mA and G/A is a formal group which

reduces to i∗Hn/(A/mA), then there exists a unique map f : Spf(A) → LTn such that f∗H̃n
∼= G and

such that this isomorphism reduces to the identity morphism on special fibers.6 The formal group H̃n is
rather complicated, but it ends up that in its p-series (in a suitable coordinate), the first nonzero term mod

(p, u1, . . . , ui−1, u
2
i , . . . , u

2
n−1) is uix

pi . Thus, over the special fiber a deformation of Hn can have any height
up to n, and that height is at least i iff the classifying map kills (p, u1, . . . , ui−1).

Now, En has the same Bousfield class as
∨n
i=0K(i), meaning that (En)∗X = 0 iff K(i)∗X = 0 for 0 ≤

i ≤ n.7 (This should be vaguely plausible based on the above observation, if you believe that chromatic
homotopy theory works out as beautifully as one might hope.) So, En detects whether X is supported over
{P0,P1,(p), . . . ,Pn,(p)}. For any homology theory E, there is an idempotent unital endofunctor LE : SHC→
SHC, called Bousfield localization, which can be thought of as very roughly analogous to localization of a
ring (but instead, SHC) with respect to some multiplicatively closed set (but instead, the thick subcategory
ker(E∗)).8 Then, we can relate the LnX = LEnX as n varies via the chromatic fracture square, which is the
homotopy pullback square

3If G is a formal group over an Fp-scheme, then the height of G can also be defined as the number of iterates of the relative Frobenius
through which we can factor [p] : G→ G.

4There isn’t an obvious notion of a Morava En for n = ∞; the universal deformation space of (Ĝa)Fp is a stack, and our usual
construction only associates spectra to certain (formal) schemes equipped with formal groups.

5The extension of the coefficients of Hn is explained by the fact that we have the sequence of inclusions AutFp (Hn) ⊆ AutF
p2

(Hn⊗Fp
Fp2 ) ⊆ · · · ⊆ AutFp (Hn ⊗Fp Fp), and this stabilizes precisely at AutFpn (Hn ⊗Fp Fpn ).

6Note that universal deformations aren’t actually universal; there’s no canonical choice, although they form a contractible groupoid.
For this reason, some people insist on saying a universal deformation, as opposed to the universal deformation. We may slip up
occasionally.

7This is a statement about all spectra, not just finite spectra. If X ∈ SHCfin, then (En)∗X = 0 iff K(n)∗X = 0; this follows from
the general fact that if K(i)∗X = 0 then K(i− 1)∗X = 0.

8Actually, in this case we’re localizing at a relatively open subset in Spec(SHCfin
(p)

).
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Ln(ηLK(n+1)
(X))

This gives us the chromatic tower · · · → L2X → L1X → L0X, and the chromatic convergence theorem says
that if X ∈ SHCfin, then X(p) ' holimn<∞ LnX.

5. But this also suggests how to globalize in the arithemetic direction. A global height-(≤n) theory should be a
homology theory which allows us to recover the En,p at all primes p. Obviously, HQ is a global height-(≤0)
theory, since E0 = HQ at all primes. Next, KU is a global height-(≤1) theory: we just p-complete to recover
E1,p. This should be thought of us the global sections of a quasicoherent spectrum-valued sheaf over Spec(Z);
we obtain E1,p by evaluating on LT1,p = Spf(Zp) → Spec(Z), since E1,p = KU⊗̂ZZp = limnKU ⊗Z Z/pn.
Moreover, the sections of this sheaf are complex-orientable, with formal groups isomorphic to the corresponding
sections of the sheaf defined by Ĝm → Spec(Z). (Note that H̃1,p

∼= (Gm)Zp ; we can take the multiplicative
formal group law as its own universal deformation.) So, to obtain a global height-(≤ 2) theory, we should
look for a scheme or stack M with a sheaf of formal groups and with maps LT2,p →M on which our sheaf

evaluates to H̃n,p – or equivalently, for a scheme or stack M with a map M → MFG through which the
inclusions of the formal neighborhoods LT2,p all factor.

6. We might think that we could try to define a sheaf of homology theories over MFG, but this is not possible
with the current cutting-edge technology, and for various reasons probably not possible at all.9 We may
summarily say simply that MFG isn’t sufficiently rigid.

7. However, it turns out there are appropriate natural maps LT2,p →Mss
ell,p, where the target is the completion

of (Mss
ell)Fp ⊂Mell.

10 We can see this as follows.

(a) Any abelian variety A/k has a p-divisible group A[p∞] = colimA[pn].

Figure 2: The p-divisible group of a complex elliptic curve.

(b) If k is a field of characteristic p > 0, then the Serre-Tate theorem says that Defk(A) ∼= Defk(A[p∞]).

(c) There is a short exact sequence 0 → Â → A[p∞] → Aét → 0, under which height is additive; we always
have ht(A[p∞]) = 2 dimA.

(d) Elliptic curves are 1-dimensional abelian varieties, so an elliptic curve C/k has ht(C[p∞]) = 2. C can be

ordinary, meaning that ht(Ĉ) = 1, or supersingular, meaning that ht(Ĉ) = 2.

(e) Thus if C is supersingular then Ĉ = C[p∞], and hence Defk(Ĉ) ∼= Defk(C[p∞]) ∼= Defk(C).

In particular, the composition LT2,p →Mss
ell,p →MFG is indeed the canonical inclusion.

9In the E∞-version of the Hopkins-Miller theorem, the subgroup structure of the formal groups determines the E∞-structure, i.e. the
associated power operations. But universal deformations are rather special, and in general formal groups don’t contain the information
necessary to determine these. Lurie’s realization theorem applies to maps of stacks to MFG which factor through some moduli stack
Mp(n) of p-divisible groups of height ≤n with formal component of dimension 1, which sidesteps this problem entirely. Cf. Goerss’s
Topological modular forms [after Hopkins, Miller, and Lurie] and Realizing families of Landweber exact homology theories.

10Obviously, the map Mss
ell,p →MFG factors through Mp(2).
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Figure 3: The p-divisible groups of ordinary and supersingular elliptic curves in characteristic p.

8. So, we might hope to get a global height-(≤ 2) theory by taking global sections on the resulting sheaf of
homology theories over

∐
pMss

ell,p. However, since this stack is disconnected, we can’t really expect to get any
integral behavior from this construction: as things stand, we’d really just be collecting all our constructions
together by taking a coproduct. Rather, we would like some single connected object into which all theMss

ell,p

embed. But there is an obvious choice, namely Mell!
11 That is:

We pass to Spec(Z) to put all primes in the game at once, and then we use
the ordinary points to interpolate between the supersingular neighborhoods.

Of course, there are a number of other reasons why people care about tmf .

• We can use tmf to get at the homotopy groups of spheres via the classical mod 2 Adams spectral sequence.
There is a sequence of spectra whose mod 2 cohomologies better and better approximate that of the sphere,
as follows.

HF∗2HF2 = A
HF∗2HZ = A//〈Sq1〉
HF∗2ko = A//〈Sq1,Sq2〉

HF∗2tmf (2) = A//〈Sq1,Sq2,Sq4〉
...

HF∗2S0 = A//〈Sq2n : n ≥ 0〉

In fact, all further quotients of A in this sequence are obstructed by the Hopf invariant 1 theorem, so tmf (2)

is is the best possible approximation along this route.

• Based on results in physics, Witten was able to define a genus on string manifolds taking values in integral
modular forms, i.e. a ring homomorphism M String2∗ → MF ∗. This refines to the string orientation, which
sits in the diagram

M FramedS0 = · · · M String M Spin MSO MO

tmf ko HZ HF2

holim

of factorizations of the unit maps of the ring spectra we saw above. Each factorization is easily seen to be sharp
with respect to this tower, which gives a refined sense in which these spectra better and better approximate
the sphere.

11Actually, in keeping with the number theory, where one demands that modular forms evaluate holomorphically at the Tate curve,
we work over the Deligne-Mumford compactification Mell in which we allow nodal degenerations but still require our geometric fibers
to be irreducible (i.e. no Néron n-gons for n > 1). On the one hand, this is reasonable for our purposes, since we really only care about
the formal groups, after all, and in fact tmf (p) is an HFp-spectrum (as we will see shortly for p = 2) while TMF (p) is not. But the
question remains why number theorists make these same choices in the first place. We’re not sure, but e.g. Deligne-Rapoport’s Les
schémas de modules de courbes elliptiques provides some hints. When one allows arbitrary Néron n-gons, the resulting stack is not
Artin. Working over Fp, one can allow Néron n-gons for (n, p) = 1, and the resulting stack will be Artin (although not separated). Of
course, since we’re working over Z, then to ensure that our stack is Artin we must require no Néron n-gons for n > 1, since any such n
is divisible by some prime number.
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But this applies to manifold theory as well. It is a classical result that a Spin manifold is nullbordant iff
its ko- and HF2-characteristic classes (i.e. its ko-Pontrjagin and Stiefel-Whitney classes) vanish.12,13 One
therefore hopes that the tmf -characteristic classes might allow us to completely detect bordism classes of
String manifolds.

6.1 Overview of the construction.

And so without further ado, we now given an illustration of the construction of the sheaf Otop onMell whose global
sections will define Tmf (and whose sections overMell will define TMF ). Recall that by definition, tmf = τ≥0Tmf .

The stacks in the diagram all stand for their respective étale sites restricted to affine schemes (which fact we’ll
address in a moment) and have the following denotations:

• Mell is the moduli of generalized (i.e. irreducible and possible admitting cuspidal singularities) elliptic curves
over Spec(Z);

• (Mell)Q is the pullback of Mell along Spec(Q)→ Spec(Z);

• (Mell)p is the pullback of Mell along Spf(Zp)→ Spec(Z);

• Mord
ell ⊂ (Mell)p is the substack of elliptic curves over p-complete rings with ordinary reduction;

• Mss
ell is the completion of (Mss

ell)Fp ⊂Mell.

Localizations are applied sectionwise. A number of comments are in order.

• Lest this construction seem unmotivated or ad hoc, we note that the geometry of sheaves on stacks implies
that this necessarily recovers the stack we started with. That is, given a derived module sheaf F over Mell,
it must be that F ' holim(FQ → (

∏
p Fp)Q ←

∏
p Fp) and that Fp ' holim(Ford → (Fss)ord ← Fss), where

subscripts denote derived completions along the appropriate substack.14 In fact, it is the same setup applied
to MFG that yields the chromatic fracture squares.

• One of the most important points – indeed, what makes the construction of tmf so technically difficult – is
that there is no immediate notion of global sections, since (by Yoneda) there is no terminal affine scheme
with an étale map to Mell.

15 We might instead try to extract a homotopy limit over all affine covers, but
unfortunately the category of homology theories isn’t complete. However, Brown representability tells us that
all homology theories are associated to spectra, and so if we lift our presheaf to this category then we might
have some renewed hope of a universal elliptic homology theory.16

In fact, it turned out that it was easier17 to prove a seemingly stronger result: our presheaf valued in homology
theories actually lifts to a sheaf valued in E∞-ring spectra. It seems that in this seminar we will mostly
take these as a black box18, but for the moment we will simply say that these are ring spectra which are
“commutative up to all possible coherent homotopies”. The main point here is that E∞-rings (and their
morphisms) are much more rigid than ordinary spectra (and their morphisms), and so in the immortal words
of Lurie: “Although it is much harder to write down an E∞-ring than a spectrum, it is also much harder to
write down a map between E∞-rings than a map between spectra. The practical effect of this, in our situation,
is that it is much harder to write down the wrong maps between E∞-rings and much easier to find the right
ones.” Indeed, the Goerss-Hopkins obstruction theory for E∞-rings will dictate that all of our choices will be
made from contractible spaces thereof.

12Cf. Anderson-Brown-Peterson’s The structure of the Spin cobordism ring.
13Note that really we should be writing wedges of suspensions of these ring spectra, or actually even wedges of suspensions of various

quotient spectra, if we want to capture all the characteristic classes.
14Given an ideal sheaf I on M we have the inclusions jn :M/In →M, and then the derived completion of F along I is given by
FI = holim(jn)∗(jn)∗F .

15In the usual setup, a presheaf on a topological space X is just a contravariant functor on its associated category Open(X) of open
subsets and inclusions. Then, its global sections are by definition given by its evaluation on the initial object X ∈ Open(X)op.

16Actually, one can define an étale morphism of stacks (on Schét), so that one can extend the étale site of Mell to include stacks;
this makes it possible to literally take global sections by evaluating on the identity map. Cf. Douglas’s Sheaves in homotopy theory.

17“Easier” is a relative term.
18Although we generally work in categories of spectra where the categories of commutative ring spectra and E∞-rings are Quillen-

equivalent, the obstruction theory is built using the precise structure of the operads in question.
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• What is this sheaf, anyways?

– If f : Spec(R)→Mell classifies a generalized elliptic curve C/R, then E = Otop(Spec(R)) is a structured
version of the homology theory obtained from the Landweber exact functor theorem. In particular:

∗ π0(E) ∼= R (so we may call Otop a derived enhancement of the ordinary structure sheaf on Mell).

∗ E is weakly even-periodic, i.e. π2E⊗π0E πnE
∼=−→ πn+2E and π2n+1E = 0 for all n ∈ Z. In particular,

all even homotopy groups are rank-1 projective π0E-modules. (They aren’t necessarily free since a
formal group over a ring is only guaranteed to have a coordinate Zariski-locally.)

∗ GE ∼= Ĉ.

– In fact, the algebraic geometry tells us that the inclusion CP 1 → CP∞ corresponds to the projection

Ẽ∗(CP∞) ∼= x · E∗[[x]] = mGE ,0 → Ẽ∗(CP 1) = (x)/(x2) = mGE ,0/m
2
GE ,0 = ωGE/E∗ = ωC/E∗

(which may be interpreted either as the relative cotangent space at the identity section or as the module
of invariant 1-forms). Thus, sectionwise we have that π2nOtop ∼= ω⊗n. Since modular forms of weight n
are by definition global sections of the line bundle ω⊗n over Mell, we might therefore expect π2nTmf
to agree with MFn. But in fact, π∗Tmf is computed via the descent spectral sequence (which will be

discussed in the final few talks of this seminar), which takes the form Hs(Mell, π
†
tOtop) ⇒ πt−sTmf

(where the dagger denotes sheafification). Note that we have E0,∗
2 = MF ∗ by definition, and then the

natural map E0,∗
∞ → E0,∗

2 induces a map π2∗Tmf → MF ∗, which is an isomorphism away from 6 (in
nonnegative degrees).19 One might therefore call π∗tmf the ring of derived modular forms. (Note that
this is no longer even-concentrated.)

– The derived stack (Mell,Otop) is essentially uniquely characterized by the requirements that it enhances
(Mell,OMell

) and that its sectionwise homotopy groups recover the tensor powers of the module of
invariant 1-forms.

• For X a Deligne-Mumford stack, i : Xét,aff → Xét induces a Quillen equivalence i∗ : PreXét
(Sp) �

PreXét,aff
(Sp) : i∗ (using the Jardine model structure), and every fibrant presheaf over Xét (which in par-

ticular must satisfy descent for hypercovers) is the pushforward of a fibrant presheaf over Xét,aff . And Otop
will be constructed as a fibrant presheaf, so the homotopy limit won’t need to be corrected, so all you model
category nerds can cool your jets.20

• We restrict our attention to étale maps because then we get what we want overMss
ell, which as it turns out can

be recovered via K(2)-localization.21 Also, this will make the obstruction theory manageable: objects of the
étale site will basically look just like pieces ofMell, and pullbacks will not be so far from honest intersections.
(Recall that an étale morphism should be thought of as a local-on-the-source isomorphism, and an étale cover
is a set of étale maps which are jointly surjective on geometric points.) To wit...

6.2 The “easy” part: construction of Otop
K(2).

Throughout this section, R will be a p-complete ring, and C/R will be an elliptic curve.

Recall that the scheme of n-torsion of C is by definition the pullback of C
[n]−−→ C

0←− Spec(R) in the category of
schemes. The p-divisible group of C is then defined to be C[p∞] = colimn C[pn]. This should be thought of as an
algebraic (as opposed to naive) intersection.

Example 1. Consider the group scheme (Gm)Fp ; recall that this can be presented as (Gm)Fp ∼= Fp[t±], with
comultiplication determined by ∆(t) = t⊗ t. On geometric points, there are ` distinct `th roots of unity, but there is

19Things always go screwy when the geometry (in this case, the orders of automorphisms of elliptic curves) lines up with the
characteristic.

20Or you can again cf. Douglas’s Sheaves in homotopy theory.
21Actually we won’t recover the E2, but rather their homotopy fixedpoints along the automorphism groups of the associated super-

singular elliptic curves. These are called higher real K-theories and denoted EO2, although this notation is somewhat ambiguous since
there’s some mess regarding precisely which finite subgroup of the Morava stabilizer group we’re using to take homotopy fixedpoints.
To partially fix this, we can work away from a fixed prime p and study elliptic curves with pk-level structure for sufficiently large k; this
extra marking will kill off the automorphisms, although to counterbalance we’ll end up with more supersingular points. In any case, by
analogy the global sections of the resulting sheaves might be called higher complex K-theories.
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only the trivial pth root of unity: we can ask for roots of the polynomial tp−1, but already we have tp−1 = (t−1)p.
So in characteristic p, taking the set-theoretic p-torsion may not recover the rank of the group. However, passing to
schemes of torsion always gives the correct rank. On the one hand, (Gm)Fp [`] is a constant group scheme on Z/`,
so this still works out fine. On the other hand, (Gm)Fp [p] ∼= Fp[t±]/(tp − 1) = Fp[t]/(t − 1)p is unreduced, but it
still has rank p. These both reflect that this group has rank 1.

Now, (assuming ht(Ĉ0) is constant over all mod-p reductions C0 of C) we have a short exact sequence 0→ Ĉ →
C[p∞] → Cét → 0; this is analogous to the situation where G is a Lie group, and then we have the short exact
sequence 0 → G0 → G → π0G → 0. Heights are additive over short exact sequences, and so we have the defining
dichotomy

type ht(Ĉ) ht(C[p∞]) ht(Cét)

ordinary 1 2 1
supersingular 2 2 0

for elliptic curves.

Here is the theorem that inspired us to invent tmf in the first place.

Theorem 1 (Serre-Tate). If k is a field of characteristic p, C0/k is an elliptic curve, and Defk denotes deformations
to complete local rings with residue field k, then Defk(C0)→ Defk(C0[p∞]) is an equivalence of categories. In other
words, if A is such a ring, then

EllA p-divA

Ellk p-divk

h

is a pullback diagram.

(Note that we consider deformations as a groupoid.)

In general, deformations of a p-divisible group G yield deformations of its splitting sequence 0 → Ĝ → G →
Gét → 0; however, étale groups have no deformations (by definition), and so the deformations of G are determined

by deformations of Ĝ along with an extension class. But if C0/k is a supersingular elliptic curve, then ht((C0)ét) = 0,

and so there is no extension class to consider. So in this case, Defk(C0) ∼= Defk(C0[p∞]) ∼= Defk(Ĉ0).

Next, we have an identification of these formal moduli spaces.

Theorem 2 (Lubin-Tate). If k is a perfect field of characteristic p and G/k is a formal group of height n < ∞,
then Defk(G) ∼= Spf(W(k)[[u1, . . . , un−1]]).

Here W(k) denotes the ring of Witt vectors of k, which is the initial complete local ring with residue field k; for
instance, W(Fp) = Zp and W(Fpn) = Zp[ζpn−1]. Again, this result tells us that we can deform G into any height
≤n. It also tells us that the functor in question is homotopically discrete: deformations of formal groups admit no
nontrivial automorphisms.

Write B(k,G) = W(k)[[u1, . . . , un−1]], and let G̃/B(k,G) denote the universal deformation of G. The following
result lifts this whole story to topology.

Theorem 3 (Goerss-Hopkins-Miller). There is a contravariant functor taking the pair (k,G) to the E∞-ring spec-

trum E(k,G), where E(k,G) is Landweber exact and even periodic, π0E(k,G) ∼= B(k,G), and GE(k,G)
∼= G̃. This

is an equivalence of topological categories onto its essential image.

This theorem requires a ridiculous amount of work to prove, but we’ll take it as a black box for the moment. It
actually follows from the more general Goerss-Hopkins obstruction theory, which we’ll talk about in a bit.

With this in hand, we can now construct OtopK(2). So suppose that C/R is the elliptic curve classified by the étale

map f : Spf(R, I)→Mss
ell. This induces an étale map on special fibers f0 : Spec(R/I)→ (Mss

ell)Fp , which classifies
the reduction C0/(R/I). Observe that the target is zero-dimensional; this is because for any formal group G/k of

height 2, by our identification of its p-series we know that the height-2 locus of G̃ in Spf(B(k,G)) ∼= Spf(W(k)[[u1]])
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is precisely V (p, u1) ∼= Spec(k). This means that Spec(R/I) is étale over Spec(Fp), so we have R/I ∼=
∏
i ki for

some finite (i.e. étale) field extensions ki/Fp. This induces a decomposition C0
∼=
∐
i C0,i. Since f is étale, then C

is a universal deformation of C0, so R ∼=
∏
iB(ki, Ĉ0,i). Thus we set OtopK(2)(f : Spf(R) →Mss

ell) =
∏
iE(ki, Ĉ0,i).

This is even periodic, and by construction its formal group is isomorphic to Ĉ. So it is indeed an elliptic E∞-ring
associated to C/R.

6.3 The not “easy” part: outline of the rest of the construction.

For the remainder of this talk, we’ll give a sweeping overview of the rest of the construction.

6.3.1 Talk 7: The Igusa tower.

We have a moduli stackMord
ell (pk) of generalized elliptic curves C/R (with R p-complete) with ordinary reduction,

equipped with pk-level structure, i.e. an isomorphism Gm[pk]
∼=−→ Ĉ[pk].22 These assemble into the Igusa tower

Mord
ell (p∞)Spf(V ∧∞) = · · · Mord

ell (p2) Mord
ell (p1) Mord

ell (p0) =Mord
ell

lim

Here, V ∧∞ is the ring of p-adic modular functions, i.e. the universal invariants for generalized elliptic curves C/R

(necessarily with no supersingular fibers) equipped with a trivialization Gm
∼=−→ Ĉ.23

Every mapMord
ell (pk+1)→Mord

ell (pk) is an étale Z/p-torsor, except at k = 0 when this is an étale (Z/p)×-torsor;

these compose to make the map Spf(V ∧∞)→Mord
ell into an ind-étale Z×p -torsor (via the identification AutZp(Ĝm) ∼=

Z×p ). In fact, V ∧∞ is canonically a θ-algebra, which is the structure naturally present on the p-adic K-theory of an E∞-
ring. Roughly, this is the data of an action of Z×p , called the Adams operations, along with a commuting Frobenius

lift. Here, the Adams operations are defined via precomposition of the trivialization with elements of Aut((Ĝm)Zp) ∼=
Z×p , and the Frobenius lift is defined by taking (C, φ : Ĝm

∼=−→ Ĉ) to (C/C[p], φ : Ĝm ∼= Ĝm/Ĝm[p]
∼=−→ Ĉ/C[p]).

6.3.2 Talk 8: θ-algebras and E∞-rings.

Lifts of maps of θ-algebras to maps of E∞-rings are governed by Goerss-Hopkins obstruction theory. Goerss-Hopkins
obstruction theory is an extremely general framework for realizing an algebraic map (of algebras over a monad) as a
topological map (of algebras in spectra over some operad). They construct a theory of functorial Postnikov towers
with respect to the appropriate notion of homotopy groups, which allows them to construct a tower of moduli spaces
of maps of simplicial spectra whose realizations yield better and better approximations to the given algebraic map.
The Eilenberg-MacLane objects for this theory of Postnikov towers (i.e. the targets of the k-invariants) naturally
represent André-Quillen cohomology; thus the obstructions to lifting a vertex through the tower live in André-
Quillen cohomology groups in the appropriate algebraic category. Fantastically, this means that the obstructions
are given entirely at the level of algebra.

6.3.3 Talk 9: K(1)-local elliptic spectra.

Suppose R is p-complete, and suppose E is a K(1)-local E∞ elliptic spectrum associated to a generalized elliptic
curve C/R. (That E is K(1)-local implies that C has ordinary reduction.) Then the p-adic K-theory of E is given
by the pullback diagram

22For k > 0, the existence of such a level structure implies that C cannot have any supersingular fibers anyways.
23This is immediate by Yoneda’s lemma, once we know that Mord

ell (p∞) is formally affine. In fact, Mord
ell (pk) is formally affine for all

k ≥ 2, and is formally affine for k = 1 whenever p > 2.
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Spf((K∧p )0E) Mord
ell (p∞)

Spf(R) Mord
ell

h

f

This is always Z×p -equivariant, i.e. the Adams operations on (K∧p )0E coincide with the torsor structure induced

from that of Spf(V ∧∞)→Mord
ell . When f is étale, this also induces a θ-algebra structure on (K∧p )0E. This may not

coincide with the one already there, but it will coincide on the sections of OtopK(1) by construction.

6.3.4 Talk 10: Construction of OtopK(1).

The construction of OtopK(1) proceeds in two steps, both using Goerss-Hopkins obstruction theory.

1. We construct tmf K(1) = OtopK(1)(Mord
ell ) as follows.

(a) If p > 2 thenMord
ell (p) is formally affine, and so we can relatively easily construct tmf (p)ord = OtopK(1)(Mord

ell (p))

along with an action of (Z/p)× through E∞-ring maps. Then, we set tmf K(1) = (tmf (p)ord)h(Z/p)× .

(b) At p = 2 we only have thatMord
ell (4) is formally affine. We might like mimic the previous setup and try to

construct a spectrum tmf (4)ord with a (Z/4)×-action, but this group has order 2 and so the obstructions
don’t vanish. Instead, we replace K with KO; the obstruction theory doesn’t carry over entirely, but it
carries over enough for us to be able to produce tmf K(1) directly.24

2. We construct the sheaf OtopK(1) in the category of tmf K(1)-algebras.

The second step uses crucially the isomorphism (K∧p )0tmf K(1)
∼= V ∧∞, which reflects the fact that when E and

F are Landweber exact, then Spec(π0(E ∧ F )) = Iso(GE ,GF ).

6.3.5 Not a talk: The chromatic attaching map.

The sheaves OtopK(1) and OtopK(2) interrelate as follows. Write B = W(k)[[u1]] with C/B a universal deformation of

a supersingular elliptic curve, and let E = OtopK(2)(Spf(B)). Then C restricts to an ordinary elliptic curve Cord

over the punctured formal disk Spf(Bord), where Bord = B[u−1
1 ]∧p , and moreover it turns out that EK(1) is an

appropriate corresponding elliptic spectrum. This will be the object that receives the chromatic attaching map

αchrom : (ιord)∗OtopK(1) →
(

(ιss)∗OtopK(2)

)
K(1)

. This map is also constructed in two steps: we construct the map

tmf K(1) → (tmf K(2))K(1) of global sections, and then we use obstruction theory for tmf K(1)-algebras to extend this
to a map of sheaves as desired.

6.3.6 Not a talk: Construction of OtopQ and the arithmetic attaching map.

Note that over a Q-algebra, every formal group is isomorphic to Ĝa; thus, the sections of OtopQ are all essen-

tially rational Eilenberg-MacLane spectra. Then, we construct the arithmetic attaching map αarith : (ιQ)∗OtopQ →(∏
p(ιp)∗Otopp

)
Q

as follows. First, we observe that (Mell)Q is covered by (Mell[∆
−1])Q and (Mell[c

−1
4 ])Q; note that

on singular Weierstraß curves, c4 is invertible precisely if there are no cuspidal singularities. So, we construct αarith

on the sections over these substacks and over their intersection, and we verify that they are compatible; by descent,
this induces the desired map of presheaves.

24Alternatively, Laures gives a construction of tmf K(1) at p = 2 by attaching two K(1)-local E∞-cells to the K(1)-local sphere, cf.

K(1)-local topological modular forms.
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